
 1

Management of Large Distributed Transactions

Extended Abstract submitted to HPTS Workshop 2001

Weihai Yu

Department of Computer Science
University of Tromsø, Norway

weihai@cs.uit.no

1 Introduction
Transaction processing includes mechanisms for concurrency control and recovery, as well as
transaction management that maintains the necessary overall context information of transactions
and conducts the concurrency control and recovery activities. However, transaction processing
suffers from two scalability problems for large transactions.

• Concurrency control for transactions that access large amount of data and last for long
period. This will cause large amount of data to be locked for long period and thus hinder
concurrent access of them. Moreover, the more data each transaction accesses, the higher
chances of deadlocks among transactions.

• Management of distributed transactions that involve many server sites. The most
noticeable tasks for transaction management are transaction enlistment and commitment
processing. These tasks may involve extra remote invocations and eventually also disk
accesses, which are the main causes to poor performance.

Most applications therefore choose to adopt a less stringent approach such as TP-lite, low
isolation levels or other limited scopes of distributed transactions.

In this paper we focus on scalability issues of distributed transaction management, i.e.,
transaction enlistment and commitment processing. There has not been much research on these
issues though, mainly because it is widely believed that transactions should be kept small and
should involve as few sites as possible. However we think it is now time to face these issues,
given, for instance, that large-scale enterprise systems and application integration are expected to
be one of the most important directions in IT industry, and that global computational grid for
large-scale resource sharing is regarded as a promising research field. Furthermore, given the
huge data space, transactions accessing many sites may not necessarily lead to high deadlock
rates.

Note that the scalability issues discussed in this paper can be orthogonal to those due to
concurrency control. As a matter of fact, compared to transactions involving human interactions
(such as transactions for software engineering), those involving many sites may not necessarily
last long (though many remote invocations do take longer time than a few local procedure calls).
Furthermore, it is often the size of data relative to the overall data space that is the real problem
for concurrency control.

We will discuss the current distributed transaction management approaches and propose an
architecture that is particularly aimed at distributed transactions accessing many sites and
combines the advantages of current approaches. We will show that this architecture does not
require much reengineering efforts.

 2

2 Requirements for Management of Large Distributed Transactions

2.1 Interoperability

In a large distributed environment, the many systems or sites involved are inevitably
heterogeneous and autonomous with respect to various aspects including transaction
management. Mechanisms must be provided to resolve heterogeneity and to some extend release
autonomy. The overhead of this, however, should not increase significantly with the number of
sites involved. Furthermore, the scope for administration and configuration should be kept as
local as possible.

2.2 Security

When a distributed transaction proceeds, there are two kinds of interactions among sites
happening at the same time:

• Remote method invocations, among application programs and/or resource managers,

• Management of transactions, among transaction management subsystems at each site.

Both these interactions have particular requirements on security. Regarding the latter, the
coordinators and participants must be trusted principals. Otherwise a non-trusted coordinator may
hold locked resources arbitrarily long or a non-trusted participant may repeatedly cause
transactions to abort. Note that this kind of interactions is typically invisible to the application.
Again, the security overhead should not grow significantly with the number of sites and much of
the security checking efforts should be able to be reused beyond transactions’ lifetimes.

2.3 Performance and optimizations

During the last three decades, enormous efforts have been made to enhance performance of
transaction processing. Optimizations are critical aspects of TP products. When involved in larger
environments, these somewhat localized optimizations should continue contributing to the overall
performance of transactional applications.

2.4 Management of resources

One important resource in transactional applications is sessions between sites, such as remote
database connections. A session may include, among other things, a network connection between
the sites, options and attributes of various settings, application specific context or state like
database cursor positions, etc. Sometimes sessions are also used for transaction management
purposes. A session is typically not durable, but still managed within a transaction scope, such
that associated resources are released upon transaction termination. Establishment of a session
may involve for instance security checking as mentioned before and is thus expensive.
Management mechanisms such as pooling can be used to avoid unnecessary overhead of session
establishment.

2.5 Reengineering

Management of very large transactions is a new challenge. New mechanisms might be introduced
or existing ones extended. One important requirement is that reengineering should be enforced
under limited scope and should not affect considerably the existing mechanisms.

 3

3 Current Transaction Management Alternatives
Basically, the sites involved in a transaction form a tree. The difference of the transaction
management mechanisms lies in the shape of the trees.

3.1 Trees of transaction sites

This approach is used in almost all TP products. The tree of sites that a transaction accesses
parallels the invocation patterns in the application. Usually, the root of the tree is the first site
that the transaction accesses. There is an edge from a to b if b is first invoked from a on behalf of
the transaction. Enlistment of a site to the transaction is done the first time that site is accessed by
the transaction. Typically, the transaction manager (TM) of a site maintains information of TM of
its parent site and the TMs of it immediate child sites.

Two-phase commitment is proceeded recursively from the root down to the leaves of the tree.
Voting results are collected in the opposite direction.

There is usually a session maintained for neighbor sites (often in form of a database connection)
that must be managed by the transaction. Remote invocations go through the sessions. Sessions
can also be pooled and need not be released after termination of transactions.

Because transaction management shares the same tree structure as remote invocations, sessions
can be used for both purposes. Interactions between the TMs may happen through the sessions
with the help of communication managers at both sites. Or a direct connection between TMs is
set up for transaction management purposes. Optimizations that piggyback TM messages and
make use of synchronous nature of remote invocations like “implicit yes-vote” can be relatively
easily enforced.

In a large distributed environment, it is generally not known in advance how invocations will
occur. Therefore, heterogeneity and autonomy should be resolved at potentially every site pairs
upon (first) invocations, so is security checking. This may imply reengineering everywhere.

When the tree gets deep, the daisy chain of communication for commitment processing becomes
a severe source of latency. A useful optimization is flattening of the tree. After flattening, the
coordinator site maintains an extra connection to all sites a transaction involves for commitment
processing. Since potentially every site can be a coordinator or a participant, the number of extra
connections can be considerably large. The dilemma here is, these connections, if not released,
may not be reused often, while establishing one for every invocation is prohibitively expensive.

3.2 Flat collections of transaction sites

Unlike the tree-of-site approach in which a TM is enlisted at the TM of the immediate invoker, in
this approach, every TM is enlisted at the single TM called the superior coordinator. OMG OTS,
when no interposition is used to generate subordinate coordinators, is such an example. For every
remote invocation, the global reference to the superior coordinator is included in the transaction
context. Upon first invocation of the transaction on a site, the TM of the site enlists itself to the
superior coordinator.

The superior coordinator can be either the TM where the transaction starts or configured as one of
a few well-known sites. The former is similar to tree flattening mentioned before. In the latter
case, interoperability and stringent security checking for transaction management purposes only
happen between the superior coordinator and TMs at sites that transactions access, rather than
between potentially every pair of sites. However, sessions for remote invocations are not used for

 4

transaction management purposes. This will result in extra messages, since messages for
transaction enlistment could otherwise be piggybacked in invocation messages.

4 The Proposed Architecture
We propose here an architecture in which a large distributed transaction environment consists of a
number of transaction management domains (TM domains). A site belongs to either one TM
domain or none. Distributed transaction management is supported within each TM domain using
some domain-specific mechanism. Typically, a TP monitor or a distributed database system
provides domain-specific transaction management.

Method invocations within a TM domain are manipulated by the transaction management
facilities of that domain. This will typically form a tree of sites within that domain. Upon the first
invocation across domain boundaries, an external coordinator will be selected. Selection of the
external coordinator can be based on criteria like conformance to certain standard (such as OMG
OTS or MS-DTC), location, availability, load balancing etc. Once an external coordinator is
selected, the current coordinator within the TM domain will be registered to the new external
coordinator and becomes a subordinate coordinator. In the new TM domain, the local coordinator
will be registered to the external coordinator and plays the roll of a subordinate coordinator in that
domain. Subsequent cross-domain invocations will be registered to the same external coordinator.

a

b c

d

e f

G

r

 Figure 1. Invocations in a transaction

s

t u v

domain X

domain Z

domain Y

 5

Figure 1 shows three TM domains X, Y, and Z. A transaction is started at site a in domain X.
Sites b, c, d, e and f within the same domain are then invoked. This will lead to a tree of sites
rooted at a. The TM at site a is now the coordinator and TMs at other sites are subordinate
coordinators. When an invocation is made from site c on site s in domain Y, site G, which for
instance is a CORBA OTS server, is chosen as the external coordinator. Sites a and s are then
registered to G as subordinate coordinators. r becomes a subordinate coordinator registered to G
when it is invoked by u. Figure 2 shows the corresponding tree of sites.

5 Discussions
In the proposed architecture, the constructed tree of sites reflects the pattern of remote
invocations within TM domains, while the roots of these trees are enlisted directly at the external
coordinator.

Overhead for resolving heterogeneity, relaxing autonomy and stringent security checking is only
necessary for cross-domain invocations. Due to the fact that sites in the same TM domain have
higher degree of affinity than those in different domains, cross-domain interactions are relatively
few. The overhead for interoperability and security will not contribute significantly to the overall
performance of large transactions. Furthermore, the amount of TM domains and sites for external
coordinators are relatively small with respect to the overall amount of sites, pooling “sessions”
between domains and external coordinators will improve their utilization without consuming
uncontrollable amount of resources.

Since intra-domain invocations are managed by domain-specific mechanisms, nearly all
optimizations in these mechanisms still work. The only restriction is that optimizations will not
propagate to the entire tree of sites once sites at foreign domains are invoked.

Sessions that need to be pooled and reused are those between sites within TM domains. They can
still be pooled without any change. This is not unrealistic, since sessions with strong notion of
states like database connections and those for load balancing and replication are only necessary
within TM domains.

The use of external coordinators will also prevent the trees from getting arbitrarily deep.
Optimizations like flattening of trees can still be used within TM domains. Note that such
optimizations often require intervention with the remote invocation mechanisms, such as
piggyback of participant addresses in return messages back to the coordinator.

a

b c

d

e f

G

r s

t u v

Figure 2. The tree of sites

