Position Paper:

Brittle Messages Make for Brittle Transaction Processing Systems
Wayne Duquaine
Grandview DB/DC Systems
10777 Cherry Ridge Road

Sebastopol, CA 95472 707-829-9633

Independent Consultant, Client/Server Interoperability

HPTS 2001

Abstract: My prior HPTS papers frequently poke holes in the communications and interoperability weaknesses of curent TP Monitors, particularly high-end TP Monitors such CICS and IMS. This paper continues in that vein. ___

1. Introduction

While the Transaction Processing (TP) world has made great strides in Data Management with the ascendancy of Relational Databases, the Data Communications side of the house has not appreciably evolved past the VSAM flat file mentality. The Data side has successfully incorporated logical versus physical data independence, self-description of data (via system catalogs), and tools to automate extraction of the data. The Comm side by and large remains mired in rigid fixed format messages, circa the 1970s. The result is that the Data Management aspects of TP work well, but the Data Comm aspects continue to kill application development and application migration.

As we move forward to integrate the Web into TP, most of today's high-end TP Data Comm components continue to suffer from:

· rigid fixed format, request/reply formats, that have little or no logical versus physical data independence.

· most messages do not have any accompanying self-description information, and instead rely upon fixed format "COBOL COPY books" or rigid IDL structures.

· are often poorly adapted to the Web, and

· have lousy Web security aspects.

Nearly all of the current major TP Data Comm paradigms utilize fixed format messages, many of which depend upon application-embedded knowledge, such as CICS Distributed Program Link (DPL), [otherwise known as External Call Interface (ECI)] which uses a fixed format “COMMAREA” structure, and the obligatory 3270 screens. Newer technologies coming on stream include CORBA, DCE, and DCOM. While these newer technologies solve the data conversion issues (ASCII/EBCDIC, little endian/big endian, etc), they still are too brittle for the loose-coupling style computing that defines the Web.

Web Business-To-Business (BTB) E-business gets its biggest payoff from automating different business processes (ordering, re-stocking, ...). This type of processing requires a program-to-program type of basic paradigm (such as RPC or Messaging), not a human sitting at a 3270 or Browser paradigm. Hence screen-scraping (an already dysfunctional technology) becomes even more dysfunctional when moved to the Web. Such albatross technologies only delay forward movement, yet consume scads of time trying to make an obviously bad solution work at least for a little while.

The latest TP middleware buzzwords frequently advertise Message Brokers to try to cure the difficulties of getting different types of TP applications to interoperate. While message brokers try to come to the rescue, they are in reality gigantic band-aids to paper over the above fundamental problems:

· interoperability stinks because there is no independence of physical data from logical data in the messages

· the lack of self-description of the data makes program changes to data area or parameter layouts brittle and breaks everything any time a fields gets moved or added.

Message Brokers do nothing to solve the underlying comm paradigm problems, they only try to paper over the basic design problems.

2. Real World Example: Burnin' Them Compile Cycles in the Middlewest

An example of the problems induced by today’s TP Data Comm support can be seen in a major Midwest Insurance Company. Their current operation is setup as follows:

· Windows PC Client (PowerBuilder) to CICS/AIX acting as the middle-tier (primarily for routing and fail-over). PowerBuilder supplies everything in COMMAREA format to CICS.

· CICS/AIX Distributed Program Link to CICS/MVS that runs the actual transactions and updates to DB2.

From an application development standpoint, every time they move a field in the COMMAREA, a number of either PowerBuilder or CICS applications break. Every time they add a field to the COMMAREA, a number of either PowerBuilder or CICS applications break. In order to solve this, every time they add or move a field, they have to essentially re-compile the universe.

Nor is this company a single example. Many customers have gone down the DPL/ECI rat hole. Other have jumped on the CORBA (or Java RMI) bandwagon, and end up in a similar fix. Add or move a field in a distributed CORBA or RMI application, and you get to re-compile everything that touches it. There are presently no Data Comm equivalents of ALTER TABLE (where we add a new field to a table without forcing all applications that use that table to be re-compiled). Instead, Data Comm is still locked into a tight coupling of the logical and physical message layout together (or logical and physical ordering of parms in a RPC message). There is no equivalent of data independence that we routinely see in RDBMSes. When we write data serially onto a disk (ala a DBMS), we know how to do data independence, but when we write data serially to a wire (ala Data Comm), we completely forget what the concept data independence means. Instead, application embedded knowledge reigns.

3. TP Web Security: Squeezing Cats Thru Keyholes

As prevously mentioned, a key aspect of Transaction Processing over the Web will involve Program to Program RPC or Messaging over the Web. But presently, most of the security mechanisms used to access high-end transaction systems (such as CICS or IMS) all stink:

· DPL / ECI send the passwords in the clear (e.g. LU 6.2 or TCP62)

· CORBA and IIOP don't work well with Firewalls

All of the above solutions were originally designed for in-house or closed networks. The above solutions do not natively work with HTTP (the lingua fraca of the Web). So the result is most often is to kludge it, e.g. create “Tunnelling” support (aka Gateways) that convert the data to/from HTTP, or define special fire-wall ports that the protocols (such as CORBA or RMI) are supposed to connect to. This often leads to compromising (or at least badly mangling) security.

As one security evangelist from Sun Microsystems aptly phrased today's security approaches for the above, they can all be described as "Locking the door, then greasing the cat to try and squeeze it through the keyhole".

4. Building Blocks Toward a More Rational Future

Transaction Processing support for the Web in the future will require:

Self describing data. XML is a good solution to that issue. It is both self-describing, highly ubiquitous, and runs natively over HTTP.

Built in support for automatic transformation of messages. XSLT (Extensible Stylesheet Language Transformation) used in tandem with XML above, would significantly reduce the need for special purpose Message Brokers, when messages need to be mediated. In effect, the message broker becomes built in to the TP Monitor, and becomes relatively simple for customer to build, by just defining an appropriate XLST definition.

Generic Program to Program support over the Web, that can encompass both RPC modes of operation and Messaging modes of operation. SOAP (Simple Object Access Protocol) becomes a big win here, since it is built upon XML, it can run as either RPC (over HTTP) or as a Messaging application (over SMTP, MSMQ, etc). However, to completely play in this game, SOAP will have to further mature, including support or extensions for TP semantics.

The world of the future is composed of loosely coupled systems, operating over the Web, using combinations of RPCs and Messaging with self-describing messages, with some level of logical/physical data independence. The current rigid message formats and application embedded knowledge (COPY books) in today’s TP systems is an anathema, and will ultimately be evolved into oblivion.

4
2
PC Servers

