
 1

A framework for implementing extended transactions
M. C. Little†, S. K. Shrivastava‡ and S. M. Wheater†
†HP Arjuna Labs, Newcastle upon Tyne, England,

‡Computing Science Department, University of Newcastle, Newcastle upon Tyne, England

1. Introduction

Structuring certain applications from long-running transactions can reduce the amount
of concurrency within an application or in the event of failures require work to be
performed again, and hence adversely affect application performance. For example,
there are certain classes of application where it is known that resources acquired
within a transaction can be released “early”, rather than having to wait until the
transaction terminates; in the event of the transaction rolling back, however, certain
compensation activities may be necessary to restore the system to a consistent state.
Such compensation activities, which may perform forward or backward recovery, will
typically be application specific, may not be necessary at all, or may be more
efficiently dealt with by the application.

There are a number of different extensions to the standard transaction model that have
been proposed to address specific application needs, that may not be easily or
efficiently addressed through the use of traditional transactions:

• Nested transactions: permits a finer control over recovery and concurrency [1].
The outermost transaction of such a hierarchy is referred to as the top- level
transaction. The permanence of effect property is only possessed by the top- level
transaction, whereas the commits of nested transactions (subtransactions) are
provisional upon the commit/abort of an enclosing transaction.

• Type specific concurrency control: concurrent read/write or write/write operations
are permitted on an object from different transactions provided these operations
can be shown to be non-interfering [2].

• Independent top-level transactions: with this model it is possible to invoke a top-
level transaction from within another (possibly deeply nested) transaction [3]. If
the logically enclosing transaction rolls back, this does not lead to the rollback of
the independent top-level transaction, which can commit or rollback
independently. In the event that the enclosing transaction rolls back, compensation
may be required, but this is typically left up to the application.

• Structured top-level transactions: long-running top-level transactions can be
structured as many independent, short-duration top- level transactions [4]. This
allows an activity to acquire and use resources for only the required duration. In
the event of failures, to obtain transactional semantics for the entire duration may
require compensations for forward or backward recovery.

What this range of extended transaction models illustrate is that a single model is not
sufficient for all applications. Therefore, is it possible to develop a framework within
which all of these models can be supported, and also facilitate the development of
other models? This was the question asked by the Object Management Group when it
began its work on attempting to standardise extended transaction models. In this paper

 2

we shall given an overview of the results of the work we performed with IBM, Iona
and others in producing the final Activity Service OMG specification that attempts to
answer that question [5].

2. The activity framework

The framework to be outlined provides a low-level infrastructure to support the
coordination and control of abstract, application specific entities. These entities
(activities) may use ACID transactions, they may use weaker forms of serializability,
or they may not be transactional at all; the framework is only concerned with their
control and co-ordination, leaving the semantics of such activities to the application
programmer. If the activities use transactions, then the framework implementation
will ensure that transaction contexts are managed correctly, e.g., contexts flow across
execution environments and transactions that are begun within the scope of an activity
are terminated before the activity terminates. A very high level view of the role of the
Activity Service is shown in Figure 1.

Action Signal Set

Application Framework

Activity Service Interfaces

Activity Service Implementation

Persistence
Service

Logging
Service

etc.

Underlying Implementation Platform

Application
Component

Object
Invocation

Action

Transaction
Service

Signal Set Activity
Coordinator

etc.

Figure 1: The role of the Activity Service.

An activity is a unit of (distributed) work that may, or may not be transactional.
During its lifetime an activity may have transactional and non-transactional periods.
An activity is created, made to run, and then completed. The result of a completed
activity is its outcome, which can be used to determine subsequent flow of control to
other activities. Activities can run over long periods of time and can thus be
suspended and then resumed later.

Demarcation messages are communicated to entities (Actions) registered with an
activity through Signals. Signals can be used to infer a flow of control during the
execution of an application. For example, the termination of one activity may initiate
the start/restart of other activities in a workflow-like environment.

An activity may run for an arbitrary length of time, and may use ACID transactions at
any point during its lifetime. It was extremely important from an industrial point of
view that this framework could work with existing transactional systems. These ACID

 3

transactions may be provided by an OTS-compliant transaction service
implementation. For example, consider Figure 2, which shows a series of connected
activities co-operating during the lifetime of an application. The solid ellipses
represent transaction boundaries, whereas the dotted ellipses are activity boundaries.
Activity A1 uses two top- level transactions during its execution, whereas A2 uses
none. Additionally, transactional activity A3 has another transactional activity, A3’
nested within it. The Activity Service is responsible for distributing both the activity
and transaction contexts between execution environments in order that the hierarchy
can be fully distributed.

A1 A2

A3

A4

A5

t ime

A3’

Figure 2: Activity and transaction relationship.

Just as a thread of control may require transactional and non-transactional periods and
can suspend and resume its transactionality, so too may it require periods of non-
activity related work. Thus, it is possible for an activity thread to perform some work
outside the scope of the activity before returning to activity related work. In the
example diagram above, if the thread performing activity A3’ decided to perform
some non-activity related work, it could do so outside the scope of A3’ and A3.
Importantly for application consistency, tt is not possible to suspend an activity
without suspending all of its enclosed transactions. In addition, suspending a
transaction which has enclosed activities will also suspend those activities.

2.1 Activity coordination and control

An activity may decide to transmit activity specific data (Signals) to any number of
other activities at specific times during its lifetime, e.g., when it terminates. The
information encoded within a Signal can be arbitrary, and will depend upon the
implementation of the extended transaction model. To drive the activity interactions
an activity coordinator is associated with each activity. Activities that require to be
informed when another activity sends a specific Signal can register with that activity’s
coordinator. The coordinator’s role is to send Signals to all registered participants and
to deal with the outcomes generated.

Importantly, the implementation of the coordinator will depend upon the type of
extended transaction model being used. For example, if a Sagas type model is in use
[6] then a compensation Signal may be required to be sent to activities if a failure has
happened, whereas a coordinator for a strict transactional model may require to send a

 4

Signal informing participants to rollback. One of the keys to the extensibility of this
framework is the Signal Set whose implemented behaviour is peculiar to the kind of
extended transaction. The Signal Set is essentially a Signal factory that produces
Signals that are sent to Actions and processes the results: it is the coordination logic.
Similarly, the behaviour of an Action will be peculiar to the extended transaction
model of which it is a part.

Therefore, to enable the coordinator to be configurable for different transaction
models, the coordinator delegates all Signal control to a Signal Set. The intelligence
about which Signal to send to an activity is hidden within a Signal Set and may be as
complex or as simple as is required. The coordinator itself is therefore extremely
simple and generic, i.e., a single coordinator implementation can be used for all
extended transaction implementations.

As new types of extended transaction emerge, new Signal Set instances and associated
Actions and Signals will be created. This allows a single implementation of this
framework to serve a large variety of extended transaction models, each with its own
action and Signal Set implementations. The framework implementation will not need
to know the behaviour which is encapsulated in the actions and Signal Sets it is given,
merely interacting with their opaque interfaces in an entirely uniform and transparent
way.

2.2 Composite activities

An activity which contains component activities, may impose a requirement on the
Activity Service implementation fo r managing these component activities. It may be
necessary to determine whether these component activities worked as specified or
failed and how to map their (non-) completion to the enclosing activity’s outcome.
This is true whether the activities are strictly parallel, strictly sequential or a complex
structure. In general, an activity that needs to co-ordinate the outcomes of component
activities has to know what state each component activity is in, i.e., which are active,
which have completed and what their outcomes were, and which activities failed to
complete.

Another activity may therefore be required to handle the sub-activity outcomes so that
control flows can be made explicit. This activity determines the collective outcome of
the component activities in the light of the various component failure and success
situations. The activity framework does not specify how the activities should be
coordinated, only providing interfaces for coordination to occur. The coordination
may therefore be performed in a manner most suitable to the application or extended
transaction model. For example, a scripting language may be required to assist the
application programmer in a workflow-like manner [7].

2.3 Activity failures

The failure of an individual activity may produce application specific inconsistencies
depending upon the type of activity:

 5

• if the activity was involved within a transaction, then any state changes it may
have been making when the failure occurred will eventually be recovered
automatically by the transaction service.

• if the activity was not involved within a transaction, then application specific
compensation may be required.

• an application that consisted of the (possibly parallel) execution of many activities
(transactional or not) may still require some form of compensation to “recover”
committed state changes made by prior activities.

Rather than distinguish between compensating and non-compensating activities, we
consider that the compensation of the state changes made by an activity is simply the
role of another activity. A compensating activity is simply performing further work on
behalf of the application. Just as application programmers are expected to write
“normal” activities, they will therefore also be required to write “compensating”
activities, if such are needed. In general, it is only application programmers who
possess sufficient information about the role of data within the application and how it
has been manipulated over time to be able to compensate for the failure of activities.

3. Using the framework

Although most effort has been concentrated on the development of the generic
framework, there has been initial work on using it to implement specific extended
transaction models. This includes a Sagas- like model [6], where coordination of top-
level transactions occurs, and an implementation of Open Nested Transactions [5].
Preliminary use of this framework has shown that it can support both of these
extended models successfully. In order to determine whether the framework can
support other models we intend to use it in a number of environments that require
different types of extended transaction implementations. If deficiencies with the
framework appear then we shall feed them back into the original OMG specification.

4. References
[1] J. E. B. Moss, “Nested Transactions: an approach to reliable distributed computing”, Ph.D.

Thesis 260, MIT, Cambridge, MA, April 1981.
[2] P. M. Shwarz and A. Z. Spector, “Synchronizing Shared Abstract Types”, ACM Transactions

on Computer Systems, Vol. 2, No. 3, August 1984, pp. 223-250.
[3] B. Liskov and R. Scheifler, “Guardians and actions: linguistic support for robust distributed

programs”, ACM TOPLAS, Vol. 5, No. 3, July 1983, pp. 381-404.
[4] Nortel, supported by the University of Newcastle upon Tyne, “OMG document bom/98-03-

01”, submission for the OMG Business Object Domain Task Force (BODTF): Workflow
Management Facility, 1998.

[5] OMG, Additional Structuring Mechanisms for the OTS Specification, September 2000,
document orbos/2000-04-02.

[6] H. Garcia-Molina and K. Salem, “Sagas”, Proceedings of the ACM SIGMOD International
Conference on the Management of Data, 1987.

[7] G.Weikum, H.J.Schek, “Concepts and Applications of Multilevel Transactions and Open
Nested Transactions”, in Database Transaction Models for Advanced Applications, ed. A.K.
Elmagarmid, Morgan Kaufmann, 1992.

