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1 Introduction

Memory speeds in today’s computers have fundamentally lagged behind processor speeds [7]. Today's
memory systems incur access latencies that are up to three orders of magnitude larger than the latency of a
single arithmetic operation. To alleviate the processor/memory performance gap, computer designers
employ a hierarchy of cache memories (e.g., three levels in the recently announced IBM Power 4 proces-
sors), in which each level trades off higher capacity for faster access times. As database applications
become increasingly memory-intensive, high performance database systems must maximize cache utiliza-
tion by keeping data that are likely to be referenced in the cache hierarchy. Ideally, the database application
should run under the illusion that the database is cache-resident, i.e., the processor should never be idle due
to main memory latency.

When optimizing cache utilization, data placement is extremely important. According to earlier studies
[1][3], when running commercial DBMSs on a modern processor, data misses in the cache hierarchy are a
key memory bottleneck and a major reason for processor stalls. Choosing a data placement scheme that
follows the workload’s memory access patterns improves spatial locality, which in turn improves cache
space utilization and performance. More specifically, the inter-record locality eliminates delays due to
unnecessary memory accesses when evaluating a predicate using a fraction of each record. The intra-
record locality minimizes the record-reconstruction cost (the delays associated with retrieving multiple
fields of the same record).

The traditional data placement scheme used in DBMSs, the N-ary Storage Model (NSM, a.k.a., slotted
pages), stores records contiguously starting from the beginning of each disk page, and uses an offset (slot)
table at the end of the page to locate the beginning of each record. NSM offers high intra-record locality.
Query operators, however, often access only a small fraction of each record causing suboptimal cache
behavior, that (a) wastes bandwidth, (b) pollutes the cache with useless data, and (c) possibly forces
replacement of information that may be needed in the future, incurring even more delays.

As an alternative, the decomposition storage model (DSM) [5] partitions an n-attribute relation verti-
cally into n sub-relations, each of which is accessed only when the corresponding attribute is needed. DSM
maximizes inter-record locality; however, the DBMS must join the participating sub-relations together to
reconstruct a record. When running queries that involve few attributes from each relation, DSM saves I/O
and improves main memory utilization. As the number of participating attributes per relation increases,
however, the record reconstruction cost dominates the query execution. For this reason, all of today’s com-
mercial database systems that we are aware of still use the traditional NSM algorithm for data placement
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[9][12][13][14]. The challenge is to repair NSM’s cache behavior, without compromising its advantages
over DSM.

This paper introduces Partition Attributes Across (PAX), a new layout for data records that com-
bines the best of the two worlds and exhibits superior performance by eliminating unnecessary accesses to
main memory. For a given relation, PAX stores the same data on each page as NSM. Within each page,
however, PAX groups all the values of a particular attribute together on a minipage. During sequential scan
(e.g., to apply a predicate on a fraction of the record), PAX fully utilizes the cache resources, because on
each miss a number of the same attribute’s values are loaded into the cache together. At the same time, all
parts of the record are on the same page. To reconstruct a record one needs to perform a mini-join among
minipages, which incurs minimal cost because it does not have to look beyond the page.

Section 2 briefly discusses why NSM, the currently used storage model, hurts cache performance. Sec-
tion 3 presents the design of PAX, while Section 4 discusses PAX/NSM speedup when running decision-
support queries on a prototype system. Additional results and further improvements are summarized in
Section 5.

2 The N-ary Storage Model

Traditionally, the records of a relation are
stored in slotted disk pages [11] obeying an n-
ary storage model (NSM). NSM stores records
sequentially on data pages. Figure 1 depicts an
NSM page after having inserted four records of
a relation with three attributes: SSN, name, and
age (left). Each record has a record header (RH)
that contains a null bitmap, offsets to the vari-
able-length values, and other implementation-
specific information [9][12][13]. Each new
record is typically inserted into the first avail-
able free space starting at the beginning of the
page. Records may have variable length, there-
fore a pointer (offset) to the beginning of the
new record is stored in the next available slot
from the end of the page. The nth record in a page is accessed by following the nth pointer from the end of
the page.

During predicate evaluation, however, NSM exhibits poor cache performance (right). For instance, to
evaluate a predicate, the query processor uses a scan operator that retrieves the value of the corresponding
attribute from each record in the relation. Assuming that the cache block size (typically 32-128 bytes) is
smaller than the record size, the scan operator will incur one cache miss per record (as illustrated in Figure
1). In addition, along with the needed value, each cache miss will bring into the cache unreferenced data
(values stored next to that of interest), wasting useful cache space and incurring unnecessary accesses to
main memory.

FIGURE 1: The cache behavior of NSM.
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3 Partition Attributes Across

We introduce a new strategy for placing
records on a page called PAX (Partition
Attributes Across). When using PAX, each
record resides on the same page as it would
reside if NSM were used; however, all SSN val-
ues, all name values, and all age values are
grouped together on minipages (for example, the
PAX page in Figure 2 stores the same records as
the NSM page in Figure 1). PAX increases the
inter-record spatial locality (because it groups
values of the same attribute that belong to differ-
ent records) with minimal impact on the intra-
record spatial locality. Therefore, only useful
information is transferred into the cache.

Figure 3 illustrates the design details of an example PAX page in which two records have been
inserted. At the beginning of each page there is a page header that contains offsets to the beginning of each
minipage. The record header information is distributed across the minipages. The structure of each
minipage is determined as follows:

• Fixed-length attribute values (e.g., SSN and age) are stored in F-minipages. At the end of each F-
minipage there is a presence bit vector with one entry per record that denotes null values for nullable
attributes.

• Variable-length attribute values (e.g., name) are stored in V-minipages. V-minipages are slotted, with
pointers to the end of each value. Null values are denoted by null pointers.

Each newly allocated page contains a page
header and a number of minipages equal to the
degree of the relation. The page header contains the
number of attributes, the attribute sizes (for fixed
length attributes), offsets to the beginning of the
minipages, the current number of records on the
page and the total space still available.

To store a relation, PAX requires the same
amount of space as NSM. NSM stores the attributes
of each record contiguously, therefore it requires one
offset (slot) per record and one additional offset for
each variable-length attribute in each record. PAX,
on the other hand, stores one offset for each variable-
length value, plus one offset for each of the n
minipages. Therefore, regardless of whether a rela-

FIGURE 2: The cache behavior of PAX.

0962 7658

3859 5523

. .. .

Jane John Jim Susan

30 52 45 20

PAGE HEADER

PAX PAGE CACHE

30 52 45 20

FIGURE 3: An example PAX page.

0962

Jane

30

7658

John

45

pid . . . 3 2 4 v 4 f

1

. .

1

1 1

presence bits

presence bits

v-offsets

# attributes
# records

attr. sizes

free space

}

}
}
}

page header

F-minipage

F-minipage

V-minipage



4

tion is stored using NSM of PAX, it will occupy the same number of pages. Implementation-specific
details may introduce slight differences which are insignificant to the overall performance.

4 Evaluation using a DSS workload

Figure 4 depicts PAX/NSM speedups when run-
ning range selections and four TPC-H queries against a
100, 200, and 500-MB TPC-H database on top of the
Shore storage manager [4]. The detailed experimental
setup and methodology are described elsewhere [2].
Decision-support systems are especially processor- and
memory-bound, and PAX outperforms NSM for all
these experiments. The speedups obtained are not con-
stant across the experiments due to a combination of
differing amounts of I/O and interactions between the
hardware and the algorithms being used.

Queries 1 and 6 are essentially range queries that
access roughly one third of each record in Lineitem and
calculate aggregates. The difference between these
TPC-H queries and the plain range selections (RS) dis-
cussed in the previous paragraph is that TPC-H queries
exploit further the spatial locality, because they access
projected data multiple times in order to calculate aggregate values. Therefore, PAX speedup is higher due
to the increased cache utilization and varies from 15% (in the 500-MB database) to 42% (in the smaller
databases).

Queries 12 and 14 are more complicated and involve two joined tables (using the adaptive dynamic
hash join algorithm [10]), as well as range predicates. Although both the NSM and the PAX implementa-
tion of the hash-join algorithm only copy the useful portion of the records, PAX still outperforms NSM
because (a) with PAX, the useful attribute values are naturally isolated, and (b) the PAX buckets are stored
on disk using the PAX format, maintaining the locality advantage as they are accessed for the second phase
of the join. PAX executes query 12 in 37-48% less time than NSM. Since query 14 accesses fewer
attributes and requires less computation than query 12, PAX outperforms NSM by only 6-32% when run-
ning this query. A more complete study [2] shows results and a sensitivity analysis when we vary the
degree of the relation and several other query parameners, and when running insertions and updates.

5 Summary

The traditional N-ary storage model’s poor spatial locality has a negative impact on data cache perfor-
mance. Alternatively, the decomposition storage model (DSM) partitions relations vertically, creating one
sub-relation per attribute. DSM exhibits better cache locality, but incurs a high record reconstruction cost.
For this reason, most commercial DBMSs use NSM to store relations on the disk.

FIGURE 4: PAX/NSM speedup for DSS queries.
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This paper introduces PAX (Partition Attributes Across), a new layout for data records on pages that
combines the advantages of NSM and DSM. For a given relation, PAX stores the same data on each page
as NSM. The difference is that within each page, PAX groups values for the same attribute together in
minipages. PAX balances the tradeoff between cache space utilization and record reconstruction cost by
improving inter-record spatial locality while keeping all parts of each record in the same page at no extra
storage overhead. The results show that PAX outperforms NSM on all TPC-H queries in this workload:

• When compared to NSM, PAX reduces L2 cache data misses and stall time by a factor of four. Range
selection queries and updates on main-memory tables execute in 17-25% less elapsed time. When run-
ning TPC-H queries that perform calculations on the data retrieved and require I/O, PAX incurs a 11-
48% speedup over NSM.

• When compared to DSM, PAX retains all the advantages of NSM and executes queries faster because it
combines high cache performance with minimal reconstruction cost.

PAX has several additional advantages. Implementing PAX on a DBMS that uses NSM requires only
changes on the page-level data manipulation code. As a low-overhead solution with a high impact on per-
formance, PAX is particularly attractive to existing large DBMSs. In addition, PAX can be used as an alter-
native data layout, and the storage manager can decide to use PAX or not when storing a relation, based
solely on the number of attributes. PAX is orthogonal to other design decisions, because it only affects the
layout of data stored on a single page (e.g., one may first use affinity-based vertical partitioning, and then
use PAX for storing the ‘thick’ sub-relations). Finally, research [6] has shown that compression algorithms
work better with vertically partitioned relations and on a per-page basis, and PAX has both of these charac-
teristics.
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