Internet Scale Storage

University of Washington
CSE Distinguished Lecturer Series

James Hamilton, 2011/11/1
VP & Distinguished Engineer, Amazon Web Services
email: James@amazon.com
web: mvdirona.com/jrh/work
blog: perspectives.mvdirona.com
Agenda

• Cloud & Accelerating Pace of Innovation

• Technology Changes
 – Memory wall & Storage Chasm
 – Disk is Tape
 – Sea Change in Networking

• Data & Storage Trends
 – Map Reduce & NoSQL
 – Migration to Cloud

Talk does not necessarily represent positions of current or past employers
The DB World is on Fire Again

• One Size does not fit all
 – Stonebraker showed >3 DB companies actually possible
 – Customers willing to support multiple DBMS

• 30 year old architectural decisions no longer valid
 – Memories exploding
 – Disk IOPS density going backwards
 • 1990 Seagate ST41600: 37.5 IOPS/GB
 • 2007 Seagate ST373453: 2.4 IOPS/GB

• Plunging cost of computing
• Cloud computing accelerates all above
Plunging Cost of Computing

- Rapidly declining cost of computing
 - Technology & cloud computing economies of scale
- Warehouse & analytical use scales inversely with cost
 - Lower costs supports more data & deeper analysis
- Traditional transactional systems scale with business
 - Purchases, ad impressions, pages served, etc.
 - Machine-to-machine transactions scale faster limited only by value of transaction & cost (e.g. computational trading)
Cloud Computing Driving Wave of Innovation & Growth

• Datacenter pace of innovation increasing
 – More innovation in last 5 years than previous 15
 – Driven by cloud service providers & very high-scale internet applications like search

• Not just a cost center
 – At scale, focus on cost
 – Mechanical, power, server, & net specialists
 – Server, Storage, & infrastructure costs falling fast

– Data is the challenge
 – Scaling is easy without data
Perspective on Scaling

Each day Amazon Web Services adds enough new capacity to support all of Amazon.com’s global infrastructure through the company’s first 5 years, when it was a $2.76B annual revenue enterprise.
Where Does the Money Go at Scale?

Assumptions:
- Facility: ~$88M for 8MW critical power
- Servers: 46,000 @ $1.45k each
- Commercial Power: ~$0.07/kWhr
- Power Usage Effectiveness: 1.45

Observations:
- 31% costs functionally related to power (trending up while server costs down)
- Networking high at 8% of overall costs & 19% of total server cost (many pay more)

3yr server & 10 yr infrastructure amortization

Agenda

• Cloud & Accelerating Pace of Innovation

• Technology Changes
 – Memory wall & Storage Chasm
 – Disk is Tape
 – Sea Change in Networking

• Data & Storage Trends
 – Map Reduce & NoSQL
 – Migration to Cloud
Limits to Computation

• Processor cycles are cheap and getting cheaper
• What limits application of infinite cores?
 1. **Data**: inability to get data to processor when needed
 2. **Power**: cost rising and will dominate
• Most sub-Moore attributes need most innovation
 – Infinite processors require infinite power
 – Getting data to processors in time to use next cycle:
 • Caches, multi-threading, ILP,…
 • All techniques consume power
 • All off chip techniques consume a lot of power
• **Power & data movement key constraints**
 – Requires more complex programming model with different optimization points
Storage & Memory B/W lagging CPU

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>DRAM</th>
<th>LAN</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual bandwidth improvement</td>
<td>1.5</td>
<td>1.27</td>
<td>1.39</td>
<td>1.28</td>
</tr>
<tr>
<td>(all milestones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual latency Improvement</td>
<td>1.17</td>
<td>1.07</td>
<td>1.12</td>
<td>1.11</td>
</tr>
<tr>
<td>(all milestones)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- CPU B/W requirements out-pacing memory and storage
- Disk & memory getting “further” away from CPU
 - Core limiting factor: power consumption & data availability
 - Powered CPU cores have no value without data
- Large sequential transfers better for both memory & disk

Source: Dave Patterson: Why Latency Lags Bandwidth and What It Means to Computing

2011/11/01
http://perspectives.mvdirona.com
Memory Wall

- Adding processor I/O pins has a positive impact but at significant power cost
 - Positive but bounded impact
- Taming the memory wall:
 - Mem & CPU Multi-Chip Module with Thru-Si Vias
 - Lab & mobile devices today

- But what about HDD & storage chasm?

Source: Andy Bechtolsheim
HDD: Capacity

• Capacity growth continues unabated

• Capacity isn’t the problem
 – What about bandwidth and IOPS?

Source: Dave Anderson
HDD: Rotational Speed

• RPM contributes negatively to:
 – rotational vibration
 – Non-Repeating Run Out (NRRO)
 – Power cubically related to RPM
• >15k RPM not economically viable
 – no improvement in sight
• RPM not improving & seek times only improving very slowly
• IOPS improvements looking forward remain slow

Source: Dave Anderson
Disk Becomes Tape

- Disk random access B/W growth ~10% of sequential B/W
- Random read 3TB disk: 31 days @ 140 IOPS (8kb)
 - 8.3 hours sequentially
- Storage Chasm widening
 - Disk becomes tape and flash becomes disk

Source: Dave Patterson with James Hamilton updates
Sea Change in Networking

- Current networks over-subscribed
 - Forces workload placement restrictions
 - Goal: all points in datacenter equidistant
- Mainframe model goes commodity
 - Competition at each layer over vertical integ.
- Get onto networking on Moores Law path
 - ASIC port count growth at near constant cost
 - Competition: Broadcom, Marvell, Fulcrum,...
Networking Looking Forward

• Move to commodity routing:
 – Much less expensive & lower power
 – More redundancy & bandwidth
 – Get on Moore’s law Path (ASIC port count growth)

• Centralized control plane
 – OpenFlow/Software Defined Networking

• Client side:
 – Virtualized NIC: Avoid hypervisor tax
 – ROCEE & iWarp: Avoid O/S transition
 – Cut-through routing: Avoid store and forward delay
 – B/W increases continue: 10GigE commodity
Agenda

• Cloud & Accelerating Pace of Innovation
• Technology Changes
 – Memory wall & Storage Chasm
 – Disk is Tape
 – Sea Change in Networking

• Data & Storage Trends
 – Map Reduce & NoSQL
 – Migration to Cloud
MapReduce

- Reaction to “RDBMs don’t scale” & admin costs
 - System community solution to big data problem

- MapReduce success fueled by:
 - Exploding data sizes
 - Scales (4,000 node single cluster at Yahoo)
 - Declining cost of computing
 - Sequential access pattern coupled with brute force

- MapReduce great for:
 - Extract, Transform and Load
 - Dirty data, weak schema, & access patterns not well suited to indexes
 - Executing arbitrary or complex functions over all data

- MR re-implementing indexes, materialized views, hash join, pipelined operators, ...
NoSQL Movement

- Another reaction “RDBMS don’t scale” & admin complexity
- Unpredictable RDBMS response times dangerous at scale
- Relax a subset of ACID to achieve scale:
 - Eventually consistent
 - Non-durable on commit
 - Don’t fully isolate conflicting txns
 - Don’t support multi-item atomic update
 - Light to no schema enforcement
 - No complex query, no joins, no aggregates, no RI, no...
- Simple programming model and administration
 - Eventual consistency often not “really” understood
 - App code required for complex queries
- Good for some workloads at scale:
 - Cassandra, MongoDB, CouchDB, SimpleDB, ...
Client Storage Migration to Cloud

• Client disk rapidly replaced by local semiconductor caches
 – Flash becoming primary client storage media
 – Higher performance, Lower power, smaller form factor, greater shock resistance, scale down below HDD cost floor, greater humidity range, wider temp range, lower service costs, ...

• Same trend in embedded devices
 – Well connected with cloud-hosted storage

• Clients storage drives cloud storage
 – Value added services, many data copies, shared access, indexed, classified, analyzed, monetized, reported, ...

2011/11/01
http://perspectives.mvdirona.com
Open Source & Cloud Influence

- Open Source DBs inexpensive
 - Encourages sharding rather than scale-up
- Cloud removes DB admin cost
 - Further fueling increased used of sharding
- DBs Ideal workload for the cloud:
 - DB admin is hard but at scale it can be automated
 - Admin scales up well & down poorly
- Massive amount of data in cloud
 - Bring the query to data rather than data to query
Summary

• Cloud scale driving quickening pace of innovation
• Plunging costs driving bigger data sets and more complex analysis
 – Data moving up memory hierarchy
 – Data moving up the storage hierarchy
• Networking costs & capabilities changing fundamentally
• Most difficult scaling problems always data related
• Exciting time to be in the storage world
Questions?

• Slides will be posted to:
 – http://mvdirona.com/jrh/work

• Perspectives Blog:
 – http://perspectives.mvdirona.com/

• Email:
 – James@amazon.com