Cloud-Computing

Economies of Scale

Self Managing Database Systems

James Hamilton, 2009/3/29 VP & Distinguished Engineer, Amazon Web Services e: James@amazon.com

w: mvdirona.com/jrh/work

b: perspectives.mvdirona.com

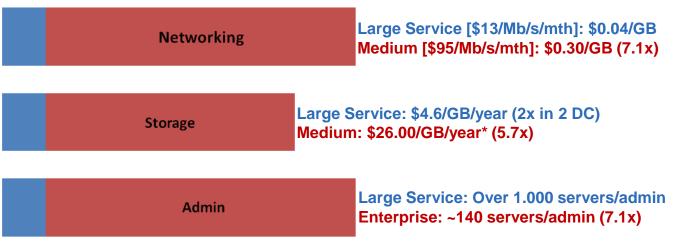
Agenda

- Services economies of scale
- Services != enterprise IT
- Speeds, feeds, & trends in servers & high-scale services
- Selection S/W & H/W techniques used to scale
- Summary



Background & biases

- 15 years in database engine development
 - Lead architect on IBM DB2
 - Architect on SQL Server
- Past 5 years in services
 - Led Exchange Hosted Services Team
 - Architect on the Windows Live Platform
 - Architect on Amazon Web Services
- Talk does not necessarily represent positions of current or past employers



Services Economies of Scale

- Substantial economies of scale possible
- 2006 comparison of very large service with small/mid-sized: (~1000 servers):

- High cost of entry
 - Physical plant expensive: 15MW roughly \$200M
- Summary: significant economies of scale but at very high cost of entry
 - Small number of large players likely outcome

Services Different from Enterprises

• Enterprise Approach:

- Largest cost is people -- scales roughly with servers (~100:1 common)
- Enterprise interests center around consolidation & utilization
 - Consolidate workload onto fewer, larger systems
 - Large SANs for storage & large routers for networking

• Internet-Scale Services Approach:

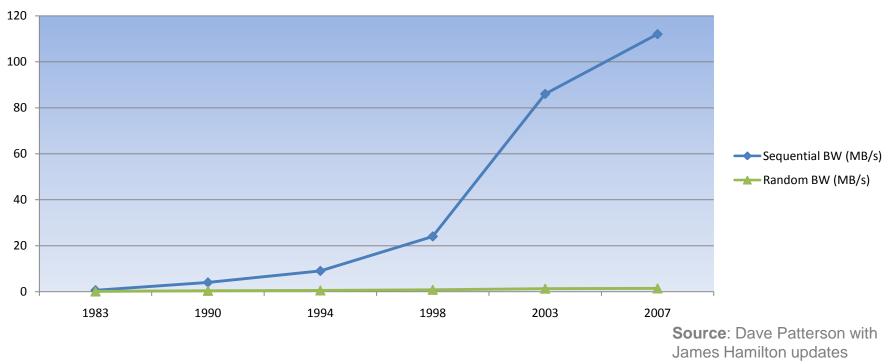
- Largest costs is server & storage H/W
 - Typically followed by cooling, power distribution, power
 - Networking varies from very low to dominant depending upon service
 - People costs under 10% & often under 5% (>1000+:1 server:admin)
- Services interests center around work-done-per-\$ (or joule)

• Observations:

- People costs shift from top to nearly irrelevant.
- Expect high-scale service techniques to spread to enterprise
- Focus instead on work done/\$ & work done/joule

Limits to Computation

- Processor cycles are cheap & getting cheaper
- What limits the application of infinite cores?
 - 1. Power: cost rising & will dominate
 - 2. Communications: getting data to processor
- The most sub-Moore attributes typically require the most innovation
 - Infinite processors require infinite power
 - Getting data to processors in time to use next cycle:
 - Caches, multi-threading, ILP,...
 - All techniques consume power
- Conclusion: power & comm key constraints
 - Impacts DC design, server design, & S/W architecture



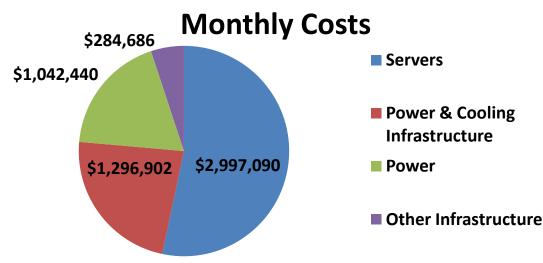
Storage B/W lagging Memory & CPU

	CPU	DRAM	LAN	Disk
Annual bandwidth improvement (all milestones)	1.5	1.27	1.39	1.28
Annual latency Improvement (all milestones)	1.17	1.07	1.12	1.11
• CPU out-pacing all means to	o feed t	hem Me	emory wall	Sto

- Hubble's Expanding Universe:
 - Everything is getting further away from everything else [Pat Helland]
- Specifically, disk is getting "further" away from memory sub-system driving larger memories and/or more disks

Disk Random BW vs Sequential BW

- Disk sequential BW lagging DRAM and CPU
- Disk random access BW growth roughly 10% of sequential BW growth
- Conclusion: Storage Chasm widening requiring larger
 memories & more disks


2009/3/29

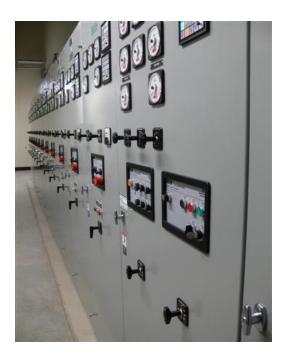
http://perspectives.mvdirona.com

Power & Related Costs Dominate

• Assumptions:

- Facility: ~\$200M for 15MW facility (15-year amort.)
- Servers: ~\$2k/each, roughly 50,000 (3-year amort.)
- Average server power draw at 30% utilization: 80%
- Commercial Power: ~\$0.07/kWhr

3yr server & 15 yr infrastructure amortization


Observations:

- \$2.3M/month from charges functionally related to power
- Power related costs trending flat or up while server costs trending down

Details at: http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx

Fully Burdened Cost of Power

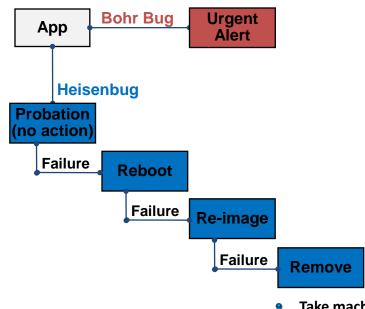
- Infrastructure cost/watt:
 - 15 year amortization & 5% money cost
 - =PMT(5%,15,2MM,0)/(15MW) =>
 \$1.28/W/yr
- Cost per watt using \$0.07 Kw*hr:
 - =-0.07*1.7/1000*0.8*24*365=>
 \$0.83/W/yr (@80% power utilization)

- Annually fully burdened cost of power:
 - \$1.28 + \$0.83 => \$2.11/W/yr

Details at: <u>http://perspectives.mvdirona.com/2008/12/06/AnnualFullyBurdenedCostOfPower.aspx</u>

Agenda

- Services economies of scale
- Services != enterprise IT
- Speeds, feeds, & trends in servers & high-scale services
- Selection S/W & H/W techniques used to scale
- Summary



Partitioned & Redundant

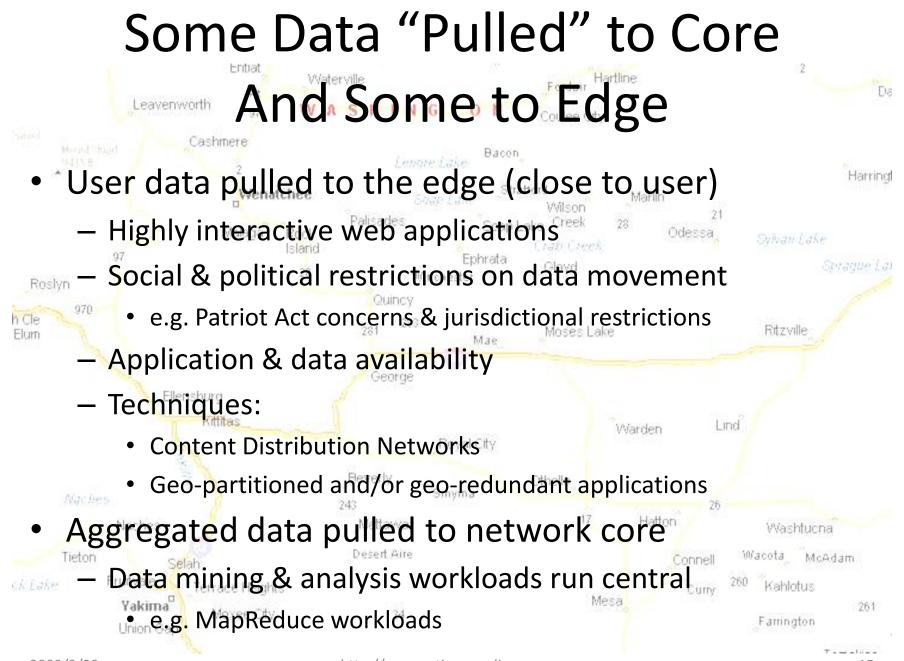
- Scalability & availability only achieved through partitioning & redundancy
 - Over 4 nines only through redundancy
 - Best hardware never good enough
 - Highly reliable S/W evolves VERY slowly
 - RDBMS hard to scale & manage
 - "Hand" partitioned clusters the norm (complex and high touch)
- Lower quality hardware in large numbers more reliable in aggregate than high-quality hardware
- Repeating a trend seen before in disk
 - Expect the same trend to again play out in networking
- Reliable service built on unreliable S/W & H/W

ROC Service Design Pattern

- Recover-Oriented Computing (ROC)
 - Assume software & hardware will fail frequently & unpredictably
 - Only affordable admin model at high scale
- Heavily instrument applications to detect failures

Bohr bug: Repeatable functional software issue (functional bugs); should be rare in production

Heisenbug: Software issue that only occurs in unusual cross-request timing issues or the pattern of long sequences of independent operations; some found only in production


- Take machine out of rotation and power down
- Set LCD/LED to "needs service"

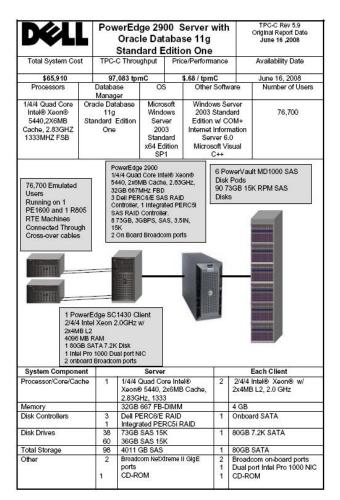
Relaxed Consistency Models

- Full ACID semantics unaffordable in real dist. systems
 - Consistency, availability, or partition-tolerance
 - Pick any two*
 - Financial transactions often used as examples of needing ACID yet two-phase commit seldom used
- Relax consistency model exploiting knowledge of application semantics
 - Caches & temporal inconsistency
- Hairball problem in social networks

- Redundant application maintained partitioned views
- Caching (e.g. memcached)

High-Scale Data Analysis

- Yield management first used by airlines
 - Airplane more expensive than computation
- Falling computing cost allows optimization & yield-management of more resources
- Heavily used in retail:


- Shelf-space optimization, supply-chain mgmt, ...
- Financial community has widely implemented automated trading & data analysis compute farms of 1,000s of nodes
- Analysis systems dominate transactional systems
 - Transactional workload growth tend to be related to business growth
 - Analysis workload growth bounded only by decline cost of computing

Memory to Disk Chasm

- Disk I/O rates grow slowly while CPU data consumption grows near Moore
 - Random read 1TB disk: 15 to 150 days*
- Sequentialize workloads
 - Essentially the storage version of cache conscious algorithms
 - e.g. map/reduce
 - Disks arrays can produce acceptable aggregate sequential bandwidth
- Redundant data: materialized views & indexes
 - Asynchronous maintenance
 - Delta or stacked indexes (from IR world)
- Distributed memory cache (remote memory "closer" than disk)
- I/O Cooling: Blend hot & cold data
- I/O concentration: partition hot & cold data

* Tape is Dead, Disk is Tape, Flash is Disk, Ram Locality is King (Jim Gray)

Case Study: TPC-C with SSD

Slot	Controller	Disks		Capacity		Usage	
0	Dell PERC5i	8x73GB,15K,SAS	RAID10	Disk 6	15GB	OS	HDD
				279.99GB	260GB	Logs	
3	Dell PERC6/E	15x36GB,15K,SAS	RAID0	Disk 2 488	3.92GB	DB data	
		15x36GB,15K,SAS	RAID0	Disk 3 488	3.92GB	DB data	
4	Dell PERC6/E	15x36GB,15K,SAS	RAID0	Disk 4 488	3.92GB	DB data	SSD?
		15x36GB,15K,SAS	RAID0	Disk 5 488	3.92GB	DB data	550:
6	Dell PERC6/E	15x73GB,15K,SAS	RAID0	Disk 0 101	6.23GB	DB data	
		15x73GB,15K,SAS	RAID0	Disk 1 101	6.23GB	DB data	

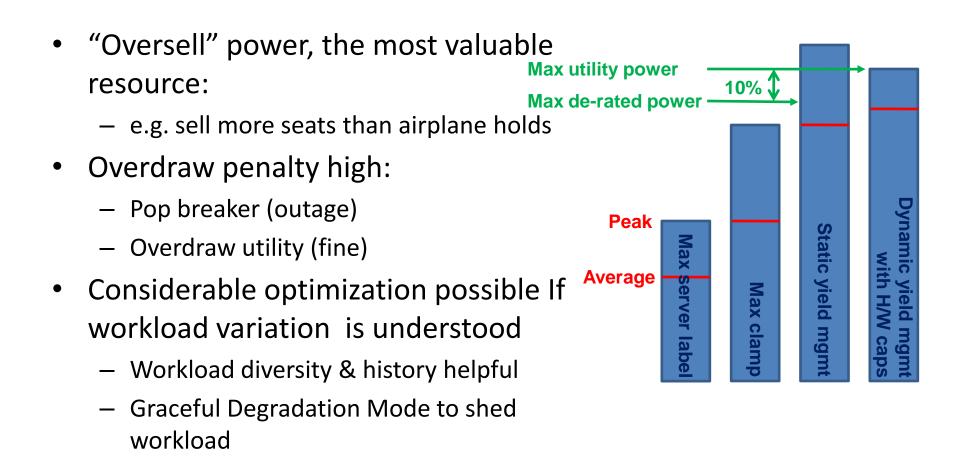
98 HDD total

•

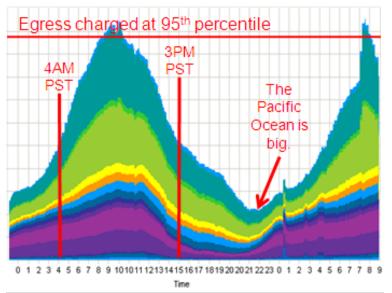
•

- 90 data disks (primarily random access)
- 8 log & O/S disks (primarily sequential access)
- Compute HDD cross-over using fictitious 128GB SSD @ 7,000 IOPS
- 90 HDD to store 2,464GB (short stroked)
 - 106GB static & 2,357GB dynamic (60 day rule)
 - 90 disk HDD budget: \$26,910 (disks only at \$299)
 - Requires 20 SSDs to support @ up to \$1,346 each
- Static content only (no 60 day rule)
 - Artificially more IOPS/GB than legal TPC-C
 - Assuming 325 IOPS/disk would require 5 SSDs at up to \$5,382
- VERY hot I/O workloads approaching breakeven on SSD
 - But TPC-C is much hotter than most commercial workloads
 - SSD price continues to improve

http://www.tpc.org/results/FDR/TPCC/Dell_2900_061608_fdr.pdf


Graceful Degradation & Admission control

- No economic "head room" quantity sufficient
 - Even at 25-50% hardware utilization, spikes will exceed 100%
 - EHS average-to-peak load spread over 6x
- Prevent overload through admission control
 - Service login typically more expensive than steady state
- Graceful degradation mode prior to admission control
 - Find less resource-intensive modes to provide degraded services


Power Yield Management

Power Provisioning in a Warehouse-Sized Computer, Xiabo Fan, Wolf Weber, Luize Borroso

Resource Consumption Shaping

- Essentially yield mgmt applied to full DC
- Network charge: base + 95th percentile
 - Push peaks to troughs
 - Fill troughs for "free"
 - Dynamic resource allocation
 - Virtual machine helpful but not needed
 - Symmetrically charged so ingress effectively free
- Power also often charged on base + peak David Treadwell & James Hamilton / Treadwell Graph
 - Server idle to full-load range: ~65% (e.g. 158W to 230W)
 - S3 (suspend) or S5 (off) when server not needed
- Disks come with both IOPS capability & capacity
 - Mix hot & cold data to "soak up" both
- Encourage priority (urgency) differentiation in charge-back model

Stacked traffic Summary (outbound) for * All *:propumsn::* All * from 1/29/2007 to 1/31/2007

Summary

- Hosted services & utility computing have huge economies of scale
 - Many server workloads will migrate to cloud
- Most difficult aspect of high-scale services is managing multi-datacenter distributed, partitioned, redundant, data stores & caches
 - This really is a database problem
- With partitioning & synchronous redundancy
 - Recover Oriented Computing management technique effective and used extensively in services
- Conclusion: DB world should invest more in making common service design patterns easy
 - This also makes auto-management much more tractable

More Information

- These slides:
 - <u>http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_SMDB2009.ppt</u>
- Designing & Deploying Internet-Scale Services:
 - <u>http://mvdirona.com/jrh/talksAndPapers/JamesRH_Lisa.pdf</u>
- Architecture for Modular Data Centers:
 - <u>http://mvdirona.com/jrh/talksAndPapers/JamesRH_CIDR.doc</u>
- Where does the power go and what to do about it:
 - <u>http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_AFCOM2009.pdf</u>

• Recovery-Oriented Computing:

- <u>http://roc.cs.berkeley.edu/</u>
- <u>http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt</u>
- <u>http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF</u>
- Autopilot: Automatic Data Center Operation:
 - <u>http://research.microsoft.com/users/misard/papers/osr2007.pdf</u>
- Perspectives Blog:
 - <u>http://perspectives.mvdirona.com</u>
- Email:
 - <u>James@amazon.com</u>