Data Center Networks
Are in My Way

Stanford Clean Slate CTO Summit

James Hamilton, 2009.10.23
VP & Distinguished Engineer, Amazon Web Services
e: James@amazon.com
web: mvdirona.com/jrh/work
blog: perspectives.mvdirona.com
work with Albert Greenberg, Srikanth Kandula, Dave Maltz, Parveen Patel, Sudipta Sengupta, Changhoon Kim, Jagwinder Brar, Justin Pietsch, Tyson Lamoreaux, Dhiren Dedhia, Alan Judge, & Dave O'Meara
Agenda

• Where Does the Money Go?
 – Is net gear really the problem?
• Workload Placement Restrictions
• Hierarchical & Over-Subscribed
• Net Gear: SUV of the Data Center
• Mainframe Business Model
• Manually Configured & Fragile at Scale
• Problems on the Border
• Summary
Where Does the Money Go?

Assumptions:
- Facility: ~$200M for 15MW facility, 82% is power dist & mechanical (15-year amort.)
- Servers: ~$2k/each, roughly 50,000 (3-year amort.)
- Average server power draw at 30% utilization: 80%
- Server to Networking equipment ratio: 2.5:1 (“Cost of a Cloud” data)
- Commercial Power: ~$0.07/kWhr

Observations:
- 62% per month in IT gear of which 44% in servers & storage
- Networking 18% of overall monthly infrastructure spend

Where Does the Power Go?

• Assuming a conventional data center with PUE ~1.7
 – Each watt to server loses ~0.7W to power distribution losses & cooling
 – IT load (servers): 1/1.7 => 59%
 – Networking Equipment => 3.4% (part of 59% above)

• Power losses are easier to track than cooling:
 – Power transmission & switching losses: 8%
 – Cooling losses remainder: 100 - (59+8) => 33%

• Observations:
 – Server efficiency & utilization improvements highly leveraged
 – Cooling costs unreasonably high
 – Networking power small at <4%
Is Net Gear Really the Problem?

• Networking represents only:
 – 18% of the monthly cost
 – 3.4% of the power

• Much improvement room but not dominant
 – Do we care?

• Servers: 55% Power & 44% monthly cost
 – Server utilization: 30% is good & 10% common

• Networking in way of the most vital optimizations
 – Improving server utilization
 – Supporting data intensive analytic workloads
Workload placement restrictions

- Workload placement over-constrained problem
 - Near storage, near app tiers, distant from redundant instances, near customer, same subnet (LB & VM Migration restrictions), …

- Goal: all data center locations equidistant
 - High bandwidth between servers anywhere in DC
 - Any workload any place
 - Need to exploit non-correlated growth/shrinkage in workload through dynamic over-provisioning
 - Resource consumption shaping
 - Optimize for server utilization rather than locality

- We are allowing the network to constrain optimization of the most valuable assets
Hierarchical & over-subscribed

- Poor net gear price/performance forces 80 to 240:1 oversubscription
- Constraints W/L placement and poor support for data intensive W/L
 - MapReduce, Data Warehousing, HPC, Analysis, ..
- MapReduce often moves entire multi-PB dataset during single job
- MapReduce code often not executing on node where data resides

Conclusion: Need cheap, non-oversubscribed 10Gbps
Net gear: SUV of the data center

• Net gear incredibly power inefficient
• Continuing with Juniper EX8216 example:
 – Power consumption: 19.2kW/pair
 – Entire server racks commonly 8kW to 10kW
• But at 128 ports per switch pair, 150W/port
• Typically used as aggregation switch
 – Assume pair, each with 110 ports “down” & 40 servers/rack
 – Only: 4.4W/server port in pair configuration
• Far from dominant data center issue but still conspicuous consumption
Mainframe Business Model

Net Equipment

- **Central Logic Manufacture**
 - Proprietary & closely guarded
 - Single source

- **Finished Hardware Supply**
 - Proprietary & closely guarded
 - Single source

- **System Software Supply**
 - Proprietary & closely guarded
 - Single source

- **Application Stack**
 - Not supported
 - No programming tools
 - No 3rd party ecosystem

Commodity Server

- **Central Logic Manufacture**
 - Standard design (x86)
 - Multiple source
 - AMD, Intel, Via, ...

- **Finished Hardware Supply**
 - Standard design
 - Multiple source
 - Dell, SGI, HP, IBM, ...

- **System Software Supply**
 - Linux (many distros/support)
 - Windows & other proprietary offerings

- **Application Stack**
 - Public/published APIs
 - High quality prog tools
 - Rich 3rd party ecosystem

Example:
- Juniper EX 8216 (used in core or aggregation layers)
 - Fully configured list: $716k w/o optics and $908k with optics

Solution: Merchant silicon, H/W independence, open source protocol/mgmt stack

2009/10/23

http://perspectives.mvdirona.com
Manually Configured & Fragile at Scale

- Unaffordable, scale-up model leads to 2-way redundancy
 - Recovery oriented computing (ROC) better beyond 2-way
- Brownout & partial failure common
 - Neither false positives nor negatives acceptable & perfect is really hard
 - Unhealthy equipment continues to operate & drop packets
- Complex protocol stacks, proprietary extensions, and proprietary mgmt
 - Norm is error-prone manual configuration
- Networking uses a distributed management model
 - Complex & slow to converge
 - Central, net & app aware mgmt is practical even in large DCs (50k+ servers)
 - Want application input (priorities, requirements, ...)
- Scale-up reliability gets expensive faster than reliable
 - Asymptotically approaches “unaffordable” but never “good enough”
 - ROC management techniques work best with more than 2-way redundancy
Problems on the Border

• All the problems of internal network but more:
 – Need large routing tables (FIBS in 512k to 1M range)
 – “Need” large packet buffers (power & cost)
 – Mainframe Router price point
 • Example: Cisco 7609
 • Fairly inexpensive border router
 • List price ~$350k for 32 ports or $11k/port
 – Mainframe DWDM optical price point
 • Example: Cisco 15454
 • List ~$489k for 8 ports or $61k/lambda (10Gbps)
 • Better at higher lambda counts but usually not needed

• High cost of WAN bandwidth serious industry issue
• DNS & Routing fragility (attacks & errors common)
Summary

• We are learning (again) scale-up doesn’t work
 – Costly
 – Insufficiently robust

• We are learning (again) that a single-source, vertically integrated supply chain is a bad idea

• The ingredients for solution near:
 – Merchant silicon broadly available
 – Distributed systems techniques
 • Central control not particularly hard even at 10^5 servers
 – Standardized H/W platform layer (OpenFlow)

• Need an open source protocol & mgmt stack
More Information

• **This Slide Deck:**
 – I will post these slides to http://mvdirona.com/jrh/work later this week

• **VL2: A Scalable and Flexible Data Center Network**

• **Cost of a Cloud: Research Problems in Data Center Networks**

• **PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric**

• **OpenFlow Switch Consortium**
 • http://www.openflowswitch.org/

• **Next Generation Data Center Architecture: Scalability & Commoditization**

• **A Scalable, Commodity Data Center Network**
 • http://cseweb.ucsd.edu/~vahdat/papers/sigcomm08.pdf

• **Data Center Switch Architecture in the Age of Merchant Silicone**

• **Berkeley Above the Clouds**

• **James’ Blog:**

• **James’ Email:**
 – James@amazon.com