Internet Scale Infrastructure Innovation

Open Compute Summit 2011

James Hamilton
VP & Distinguished Engineer, Amazon Web Services
email: James@amazon.com
web: mvdirona.com/jrh/work
blog: perspectives.mvdirona.com
Agenda

- Quickening Pace Infrastructure Innovation
 - Influence of Cloud computing
- Power Distribution
- Cooling & Shell Designs

Talk does not necessarily represent positions of current or past employers
Quickening Pace of Innovation

- Datacenter pace of innovation increasing
 - More innovation in last 5 years than previous 15
 - Driven by cloud service providers and very high-scale internet applications like search
 - Cost of infrastructure dominates service cost
 - Not just a cost center
- High focus on infrastructure innovation
 - Driving down cost
 - Increasing aggregate reliability
 - Reducing resource consumption footprint
Perspective on Scaling

Each day Amazon Web Services adds enough capacity to support all of Amazon.com’s global infrastructure through the company’s first 5 years, when it was a $2.76B enterprise 2011/10/
Where Does the Money Go?

- **Assumptions:**
 - Facility: ~$88M for 8MW critical power
 - Servers: 46,000 @ $1.45k each
 - Commercial Power: ~$0.07/kWhr
 - Power Usage Effectiveness: 1.45

- **Observations:**
 - 31% costs functionally related to power (trending up while server costs down)
 - Networking high at 8% of overall costs & 19% of total server cost (many pay more)

Power Distribution

~11% lost in distribution - \(0.997 \times 0.94 \times 0.98 \times 0.98 \times 0.99 = 89\%\)

High Voltage Utility Distribution
- 115kv

Sub-station
- 13.2kv
- 0.3% loss
- 99.7% efficient

Generators
- 13.2kv

UPS: Rotary or Battery
- 13.2kv
- 6% loss
- 94% efficient, ~97% available

Transformers
- 13.2kv
- 2% loss
- 98% efficient

UPS & Gen often on 480V

IT Load (servers, storage, Net, ...)
- 480V
- 2% loss
- 98% efficient

Note: Two more levels of power conversion at server

~1% loss in switch gear & conductors

Wednesday, October 26, 2011
Power Distribution Efficiency Summary

- 2 more power conversions at servers
 5. Power Supply: often under 80% at typical load
 6. On board voltage regulators (VRMs or VRDs)

- Rules to minimize power distribution losses:
 - Oversell power (more load than provisioned power)
 - Avoid conversions (fewer & better)
 - Increase efficiency of conversions
 - High voltage as close to load as possible
 - Size voltage regulators to load & use efficient parts
 - High voltage direct current a small potential gain
Mechanical Systems

- Cooling Tower
- CWS Pump
- A/C Condenser
- A/C Compressor
- A/C Evaporator
- Primary Pump
- Heat Exchanger (Water-Side Economizer)

20% of total power

Overall Mechanical Losses ~22%

Blow down & Evaporative Loss at 8MW facility: ~200,000 gal/day

Server fans 6 to 9W each

Diluted Hot/Cold Mix

Computer Room Air Handler

Air Impeller

Cold fans

Hot fans

leakage

cold

Wednesday, October 26, 2011
Hot Aisle Containment

Facebook Open Compute

WriteLine

Intel

Intel
ASHRAE Recommendations

NEBS Telco Standard (~1970)
ASHRAE 2011 Allowable Class 1
ASHRAE 2011 Recommended Class 1
ASHRAE 2008 Allowable Class 1
ASHRAE 2008 Recommended Class 1
Most Datacenters Still Run Cold

ASHRAE 2008 Recommended Class 1

Most datacenters run down in this range
Avoiding Air Conditioning

- Component temps specs higher than historically hottest place on earth
 - Al Aziziyah, Libya: 136F/58C (1922)
- Just a mechanical engineering problem
 - More air or better mechanical designs
- Tradeoff: semi-conductor leakage & power to move more air vs cooling savings
- Currently available equipment temp limits:
 - 40C/104F: CloudRack C2 & most net gear
 - 35C/95F: Most of the server industry

Thanks to Ty Schmitt & Giovanni Coglitore

Wednesday, October 26, 2011
Innovative Shell Designs

- Evaporative cooling only
 - High pressure misting on right
 - Damp media design below
- Full building ductless cooling

Facebook Prineville above & below
Modular and Pre-fab DC Designs

- Fast & economic deployments
- Sub-1.2 PUE designs
- Air-side economized
 - In some cases no mechanical cooling
- ISO standard shipping containers offered by Dell, HP, SGI, IBM, ...

Microsoft ITPAC

Amazon Perdix
Questions?

- Slides will be posted to:
 - http://mvdirona.com/jrh/work
- Perspectives Blog:
 - http://perspectives.mvdirona.com/
- Email:
 - James@amazon.com