
Philip A. Bernstein
 Joint work with Colin Reid, Sudipto Das,
 Ming Wu, Xinhao Yuan

Microsoft Corporation

Presented at Amazon.com
December 5, 2011

It’s a research project.

We have two implementations

A software stack for transactional record management
Stores [key, value] pairs, which are accessed within transactions

It’s a standard interface that underlies all database systems

Functionality

Records: Stored [key, value] pairs

Record operations: Insert, Delete, Update,
Get record where field = X; Get next

Transactions: Start, Commit, Abort

2

Enables scaling-out large-scale web services without
partitioning data or application

Supports real-time data analytics
Uses multi-version data for high-speed transaction
processing and queries on the same server

All isolation levels, including concurrency control over key-
range operations.

Exploits technology trends
flash memory, high-speed networks, multi-core

3

The log is the database. All servers can access it.

Each transaction executes against its partial, cached, DB copy

Then it appends its after-images to the log.

Each server rolls forward the log on its partial, cached DB copy

Roll forward (a.k.a. meld) does optimistic concurrency control

N.B.: Log-append is the only server-to-server synchronization

Log

4

DBMS
cache

App
Server

Meld DBMS
cache

App
Server

Meld DBMS
cache

App
Server

Meld

Log

DBMS

App
Core

Cache

DBMS

App
Core

Core

Roll Forward

The log is the
database.

All cores can access it.

Each transaction
appends its after-
images to the log.

One core runs meld
to do OCC and roll
forward the log

Motivation

System architecture

Performance

Related Work

Conclusion

6

7

G

B

A

H

C I

D

A D C B I H G

Binary
Search
Tree

Tree is marshaled into the log

7

D

Update
D’s value

8

G

B

A

H

C I

D

Copy on write

To update a node, replace nodes up to the root

C

G

B

8

Each server has a cache of the last committed DB state

9

A D C B I H G

Transaction execution
1. Get pointer to snapshot
2. Generate updates locally
3. Append intention log record

D C B G
 Snapshot

G

B

C

D

 DB cache

G

B

C

D

H

I A

last committed

Each server processes intention records in sequence

To process transaction T’s intention record.
Check whether T experienced a conflict

If not, T committed, so the server merges the intention into
its last committed state

All servers make the same commit/abort decisions

10

A D C B I H G D C B G

T’s conflict
zone

transaction T

Did a committed transaction write
into T’s readset or writeset here?

 Snapshot

1. Run transaction

2. Broadcast intention

3. Append intention to log

4. Send log location

5. De-serialize intention

6. Meld

11 11

1. Broadcasting the intention

2. Appending intention to the log

3. Optimistic concurrency control (OCC)

4. Meld

Technology will improve 1 & 2

For 3, app behavior drives OCC performance

But 4 depends on single-threaded processor
performance, which isn’t improving

Hence, it’s important to optimize Meld

12

Last-committed state
before T is melded

Compare transaction T’s after-image to the last committed state

which is annotated with version and dependency metadata

Traverse T’s intention, comparing versions to last-committed state

Stop traversing when you reach an unchanged subtree

If version(x)=version(x) then simply replace x by x

Log x

x[read: x] x

state when T executed Transaction T’s
intention

x

13

14

• T1 creates keys B,C,D,E

D

B E

C

T1

T2 D

B E

C A

D

B E

C F

T3

D

B E

C F A

• T2 and T3 do not
conflict, so the resulting
melded state is A, B, C, D, E, F

• Then T2 and T3 execute
concurrently, both
based on the
result of T1

• T2 inserts A

• T3 inserts F

14

15

Root

D

B E

C

Node Metadata
• version of the subtree
• dependency info

metadata

…
…

…

Every node n has a unique version
number, VN(n), which identifies the
exact content of n’s subtree

Every node n in an intention T stores
metadata about T’s snapshot

Version of n in T’s snapshot

Dependency information

metadata compresses to ~30 bytes

15

16

T1 D

B E

C
VN=51

VN=53

VN=54

VN=52

C B E D

VN Offset +1 +2 +3 +4

Absolute VN: 50 51 52 53 54



…

T1 T0

We need to avoid synchronization when assigning VNs

VN(n) = intention base location + offset of n in its intention

The base location is assigned when the
intention is logged

Given: T0’s root subtree has VN 50

VN of each node n in T1= 50 + n’s offset

16

Subtree metadata includes a source structure version (SSV).

Intutively, SSV(n) = version of n in transaction T’s snapshot

DependsOn(n) = Yes if T depends on n not having changed
while T executed

T1’s root subtree depends on the entire tree version 50.

Since SSV(D) = VN(), T1 becomes the last-committed state.

17

Absolute VN 50 51 52 53 54

C B E D

VN Offset: +1 +2 +3 +4
SSV: 0 0 0 50
DependsOn: N N N Y



…

T0 T1

17

C B E D

VN Offset: +1 +2 +3 +4
SSV: 0 0 0 50
DependsOn: N N N Y

Absolute VN 51 52 53 54 55 56 57

A B D

+1 +2 +3
 0 52 54
N N N

T0 T1 T2

A serial intention is one whose source version is the last
committed state.

Meld is then trivial and needs to consider only the root node.

T1 was serial.

T2 is serial, so meld makes T2 the last committed state.

Thus, a meld of a serial intention executes in constant time.

18

19

D

B E

C

T1

T2 D

B E

C A

D

B E

C F

T3

D

B E

C F A

19

20
Absolute VN 51 52 53 54 55 56 57 58 59 60

T0 T1

C B E D A B D

T2

VN Offset: +1 +2 +3 +4
SSV: 0 0 0 50
DependsOn: N N N Y

+1 +2 +3
 0 53 54
N N N

F E D

T3

T3 is not serial because VN of D in T2 (= 57)  SSV(D) in T3 (= 54).

Meld checks if T3 conflicts with a transaction in its conflict zone

Traverses T3, comparing T3’s nodes to the last-committed state

When a concurrent transaction (e.g. T3) experiences no conflicts,
meld creates an ephemeral intention to merge its state

+1 +2 +3
 0 52 54
N N N

20

21

Absolute VN 51 52 53 54 55 56 57 58 59 60 61

+1 +2 +3
0 52 54
N N N

T0 T1

C B E D A B D

T2

VN Offset: +1 +2 +3 +4
SSV: 0 0 0 50
DependsOn: N N N Y

+1 +2 +3
 0 53 54
N N N

F E D

T3 M3

+1
57
N

D

A committed concurrent intention produces an
ephemeral intention

It’s created deterministically in memory on all servers.

It logically commits immediately after the intention it melds.

21

Ephemeral
intention

22

Distinguishing payload updates from subtree updates

Phantom detection

Asymmetric meld operations

Deletions, using tombstones in the intention header

Garbage collection

Checkpointing and recovery

See [Bernstein et al., VLDB 2011]

22

Focus here is on meld throughput only

For latency, see our VLDB 2011 paper

We count committed and aborted transactions

Experiment setup

128K keys, all in main memory. Keys and payloads are 8 bytes.

Serializable isolation, so intentions contain readsets

De-serialize intentions on separate threads before meld

Meld throughput depends on transaction size and
conflict zone size (“concurrency degree”)

As transaction size or concurrency degree increase
 more concurrent transactions update keys with common
 ancestors
 meld has to traverse deeper in the tree

23

r:w ratio is 1:1 con-di = concurrency degree i

24

25

Brute force = traverse the whole tree

26

Hardly any effect, indicating most traversals
short-circuit high in the tree.

27

Hyder resembles a primary-copy replicated DB

Primary copy broadcasts only committed updates

Central transaction server is a bottleneck

In Hyder, only the log is centralized

Hyder is a “data-sharing” DB system

Classical approach uses a distributed lock manager

Each server runs an ordinary single-server DBMS

But, before a server fetches a page, it locks the page

28

29

Performance issues: remote lock requests; ping-pong pages

Used in Oracle RAC & Exadata and IBM DB2 Data-Sharing

Have not yet compared its performance to Hyder

Server A Server B

P

• Server A gets a write-lock on
page P and fetches P Request P

P

r2

• Server B requests a lock on P
• Lock manager forward request to A

• When A is able to unlock P, it releases
the lock and sends P to B

• Need this synchronization even if
B wants a different record than A

Lots of OCC papers but none that give details of
efficient conflict-testing

By contrast, there’s a huge literature on conflict-
testing for locking

Oxenstored [Gazagnairem & Hanquezis, ICFP 09]
Similar scenario: MV trees and OCC

However, very coarse-grain conflict-testing

Uses none of our optimizations

30

New algorithm for OCC

Developed many optimizations to truncate the
conflict checking early in the tree traversal

Implemented and measure it

Future work:
Apply it to other tree structures

Measure it on various storage devices

Compare it with locking and other OCC methods on
multiversion trees

Try to apply it to physiological logging

31

C.W. Reid, P.A. Bernstein: Implementing an Append-
Only Interface for Semiconductor Storage.
IEEE Data Eng. Bull. 33(4): 14-20 (2010)

P.A. Bernstein, C.W. Reid, S. Das: Hyder - A
Transactional Record Manager for Shared Flash.
CIDR 2011: 9-20

P.A. Bernstein, C.W. Reid, M. Wu, X. Yuan: Optimistic
Concurrency Control by Melding Trees.
PVLDB 4(11): 944-955 (2011)

© 2007 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it

should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

