Bqulng Web Scale Appllcatlons W|th AWS
Vo, NS
Simon Elisha / Principal Solution Architect / @simon_elisha

3 C AN T R S~ N It

James Hamilton / Vice President & Dlstlngwshed Engineer

U
#remvent

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the expre: nt of Amazon.c




Months of Travel

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



Minutes of Terror

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



100,000

Concurrent Viewers

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



Second Chances

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.






A Tale of Web Scale

Streaming images and video
of Curiosity’s landing on
Mars

« Multiple Regions — fully automated

« Each stack handles up to 25 Gbps of traffic
« Dynamically handles spikes in load

« Spreads workload across geographies

« Over 100 instances per stack

« All gone away now...

NASA/JPL Live Video Streaming Architecture

Key
'l". Nginx Edge cache
B AdobeFmsas

Avoiding latency-based routing in order to preferentially send more Amazon Elastic
traffic to AWS regions and AZs in predictable ratios Load Balancer

CloudFormation
Stack

marslive.jpl.nasa.gov
managed by Route53.
WRR across AWS
regions e CloudFront
x{ﬁb‘\ streams from FMS
g!e'; for museum
Tl partners and to
e “‘/”// provide a fallback/

offload solution

ELBs to front the

secmda(y cache and
simpiify Route53 WRR

(m2.4xlarge)

2-3 Nginx mid-tier cache
servers in each AZ
(m2.4xlarge)

£ Primary and standby
= n H Adobe FMS 4.5 EC2 spread
\ \ across two regions (m2.4xlarge)

-
=

Satellite Feed

NASATV

Telestream Wirecast

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



\rﬂ'"\"if

META VATA
La.yer

gﬁs'teﬁls

/
/

Q‘h.--

S coﬁied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



T

P

2012 Amazon.com, Inc. and.its.affiliates. By not be copied, modified or distributegt¥ hole or in part without the express consent of A




CONDENSEP

CONDENSED

CONDENSED

CONDENSED

/




Primary Colors

Fundamental Design Conside
Web-Scale Applications ¢



1. Design for Failure

and nothing will really fail

"Everything fails, all the time"

Werner Vogels, CTO Amazon.com
&

* Avoid single points of failure
e Assume everything fails, and design backwards
* Goal: Applications should continue to function even if the underlying physical

hardware fails or is removed or replaced
—com, Inc. and its affiliates. All rights reserved. WmodibeuWoleart without the express consent of Amazon.com, Inc. \ \ N



=<3 I F 2 Y

2. Loose coupling sets you free
The Iooser they re coupled th_e blgger they scale

* Independent components

* Design everything as a black box
e De-couple interactions

* Load- balance clusters

—Jr_ A

Use Amazon SQS as Buffers

Loose Coupling A « X

using Queues ControlerB || [Contraller€
= & ™ 2




3. Implement Elasticity
Elasticity is a fundamental property of the Cloud
S e— - ‘ ~ -

=  Don’t assume health or fixed location of components
* Use designs that are resilient to reboot and re-launch
* Bootstrap your instances: Instances on boot will ask a question
“Who am | & what is my role?”
Enable dynamic configuration

L P
s

|

——
e Use Auto-scaling (Free)
e Use [Elastic] Load Balancing on multiple layers

» Use configurations in SimpleDB/S3/etc to bootstrap instance
—* © 2012 Amazon.com, Inc. and its a stri ‘WWS consent ofW, NN .




1 3 . AL E ~ BN =i — B
— e s » R TR . — S
b

4. Build Security in every layer

Design with Security in mind

<3

v "
B o L0200 y

With the cloud, you lose a little bit of
physical control, but not your ownership

“‘

_ | i1 N .
Create distinct Security Groups for each Amazon EC2 tier

e Use security group-based rules to control access between layers

* Use Virtual Private Cloud (VPC) to combine internal and AWS assets
* Encrypt data “at-rest” in Amazon S3

* Encrypt data “in-transit” (SSL)

e Consider encrypted file systems in EC2 for sensitive data

* Use AWS Identity & Access Management (IAM)

* Use MultiFactor Authentication (MFA)




5. Don't fear constraints

Rethmk architectural c

I\/Iore RAM? Distribute Ioad across machlnes
Shared distributed cache

Better IOPS on my database?
Multiple read-only / sharding / DB clustering / Caching /

PrOV|5|oned IOP Z SSD instances e
Hardware Config does not

match?
Implement Elasticity

Your hardware failed or messed up config?
Simply throw it away and switch to new hardware with

no addltlonal cost

Performance
Caching at different levels (Page, Render, DB)

© 2012 Amazon.com, Inc. an&' consent of Amazon.com, Inc.



B DL & w ST _ e, _ fgsv,,

6. Think Parallel

Serial and Sequentlal are now hlstory

NIE 3 . L5 T
o 1T, ter T re Y., mepq; ”’-8.... 5 e
...d. '.'-(n-;.-’:. "'.’; U»_w:‘c‘ --.,,
eSwa 5y
‘a almage()(,,v3°/tr =
‘i°=~---—~%wa'9"Ma'q b s S
bitafif)ji= n‘uw..,(%‘?cmm! u
*"%m‘aum»w - e —
,.D CENIET £ % oF & o X 38 S Rl va' Images v-\~< Qit 1S i —
A-,..‘ vcll,;n,e"ad > BTy Pox "‘4 |Ll<'/td > B AN et
.-:An‘u_rq WASTE Y e T vﬁ:cw-- N rgem0" &K / t =2 anpin ANTE TR TRy meae— s
<body onLoad-"MM preloadimages( imEgesImy o gt s — imeem e _g,,__-_-__—a
s o ble widih="694" hordes l"')cer'spacsngr'w -eupuacu-gr 8% align=trastarts -
<tr>
height= <tld>val| “ .:

M‘ultii'éﬁfeadinﬂg andeeantwrﬁsf feq"‘
- Run parallel MapR‘éb‘d’c’e Jobs :

reloa

_ Use Elastic Load Balamcmg‘iﬁﬂ@m%meﬂba"d acrosi,spmuﬁ

' ; bécompg§¢°g ﬁéﬁj’gﬁbe ts mmpiegpf m, s ce.uspafy-,gf‘,‘%w
Aot M 2

P (e “top valide

n:
<td valld ple wi
e aItr> <ta = s BEOPT
2/18D1OT o apesins <tr carsen i
> AL ~:<o"' nj-:-" T ptE™ 225pt ".,')
“tiio ""';«/"’/-{d‘; gntrt34e erﬂ 24 07 Pt & avg®’ ne -
<taple T2 /1 T o = ma 2! ing” L
SO DL Y _=toP . styte” Tl /trPS”’S.":aw"‘ s L s
<1 > igh= =prl A .* >
aptez tr RGPl s n sadi® el
coth L td i/aclasb_-‘::" adlm‘cgfc?ﬁgg' i 21192 ‘75 0-0
s'v =di REE L s £ nag” n de st®
L Lo ee AT e ol pord®’ | ims®

c w; str > on @ QO?Z,A'nﬁﬂn com, Inc andi 'Fﬁ All rights reserved Maﬁ/aop'?e,’coagd modified or dasfaaeted in whole or in pa



7. Leverage multiple storage options
One size DOES NOT fit all

= —

Amazon Simple Storage Service (Amazon S3): large static objects
Amazon Glacier: long term archival of objects

Amazon CloudFront: content distribution

Amazon DynamoDB: infinitely scalable NoSQL “Big Tables”
Amazon ElastiCache: in memory caching

Amazon CloudSearch: fast, highly-scalable search functionality
Amazon Elastic Compute Cloud (Amazon EC2) local disk drive : transient data

Amazon Elastic Block Store (Amazon EBS): persistent storage + snapshots on S3

Amazon EBS PIOPs: consistent, persistent storage for any RDBMS + Snapshots on S3
Amazon Relation Database Service (Amazon RDS): RDBMS service —

Automated and Managed MySQL, Oracle & SQL Server ]

Amazon EC2 High 1/0O Instances: high performance, local SSD-backed storage
——

» q - B
© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be cwodified or distributed in whole or in part without the express consent of Amaz Inc.“
B Y -






S
: i
of\/Amazon.com, Inc.



Lets you Auto Scale
Q.00 roricy

as—-create-auto-scaling-group MyGroup
--launch-configuration MyConfig
--availability-zones eu-west-1la
--min-size 4
--max-size 200

Deployment & Administration Auto Scaling

Automatic re-sizing of compute clusters based on demand

App Services

Feature Details
Control Define minimum and maximum instance pool
Compute Storage Database sizes and when scaling and cool down occurs.
) Integrated to Amazon Use metrics gathered by CloudWatch to drive
Networking CloudWatch scaling.
Instance types Run Auto Scaling for On-Demand and Spot
AWS Global Infrastructure Instances. Compatible with VPC.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



Elastic Load Balancing

« Create highly scalable applications
e Distribute load across EC2 instances in

multiple availability zones

Feature

Details

Available

Health checks

Session stickiness

Secure sockets layer

Monitoring

Load balance across instances in multiple
Availability Zones

Automatically checks health of instances and
takes them in or out of service

Route requests to the same instance

Supports SSL offload from web and application
servers with flexible cipher support

Publishes metrics to CloudWatch



But usually some state has to reside somewhere

Cookies in browser

Session database

Memory-resident session manager

Framework provided session handler

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



So this store of state needs to be...

Scalable
*EUEDIE




Where should session state reside?

Trigger auto-
o scaling policy

Not Here —

Here

State must reside OUTSIDE
the scope of the elements you
wish to scale

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.




And what do | build it on?

The state service itself must

be well architected | Scalable
Reliable

q‘a"a I

P
%QZ
<

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in pa

’?ﬁ%@
O

000 00000OC0COCGCOGEOGOOGNOGSNOSNOIOS
- 00000000000 OCFOGFOGNOSNOSO

without the express consent of Amazon.com, Inc.



ONLINE
GAMES

Online games back-end infrastructures can be challenging to
maintain and operate. Peak usage periods, multiple players, and
high volumes of write operations are some of the most common
problems that operations teams face.

But the most difficult challenge is ensuring flexibility in the scale of
that system. A popular game might suddenly receive millions of
users in a matter of hours, yet it must continue to provide a

satisfactory player experience. Amazon Web Services provides
different tools and services that can be used for building online
games that scale under high usage traffic patterns.

This document presents a cost-effective online game architecture
featuring automatic capacity adjustment, a highly available and
high-speed database, and a data processing cluster for player
behavior analysis.

amazon

web services




If at first you don’t succ
etry logic is fundamental
e5|gn

ut without back-off logic,
ay still “break”

se Idempotency as “secre




Without retries, the Web would not work.
Assumes things will fail, and we will need to retry.

"'Zi\

— A”E'Zu 'Y WM&—.——, R " 7V V VYN

What is the difference between a bad network and a failing host?
Nothing that is perceptible to client semantics.

So long as another node is available to accept the request and the system
is idempotent by design.

Retry is now familiar behavior for users.
E.g. refresh your web page, refresh Twitter, etc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



&V hat\“ Y?l}Tse?‘VICé ﬁgﬂg )deg radeg:l;and
hen tries to.restore in the ace of la gé
DE tup‘tr% ' |

hat' |dts of clis

B -o’;’ f ¥ £ “ ! ' o

e

"~

\



y;'gg!!g-'

W
45 3

and- may enter a VlCious EK

TR e

hQUt thIS the seﬁ/lce,WﬁLbewqode d




currentRetry =0
DO
status = execute Amazon SimpleDB request
IF status = success OR status = client error (4xx)
set retry to false
process the response or client error as appropriate
ELSE
set retry to true
currentRetry = currentRetry + 1
wait for a random delay between 0 and (4”*currentRetry * 100) milliseconds
END-IF
WHILE (retry = true AND currentRetry < MaxNumberOfRetries)

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.






PROMPT> ec2-run-instances ami-b232d0db -k gsg-keypair --client-
token 550e8400-e29b-41d4-a716-446655440000

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.






Synchronously replicated databases in normal
operation

Read-only storage systems, synchronously
replicated databases when partitioned,
membase

Multi-master / asynchronously replicated
databases (Active Directory, Outlook and
Exchange, DNS)



CAP Theory 12 Years on...

Not as simple as “choose 2 out of 3”

Partitions are rare — so why sacrifice C or A for a rare/managed event?
CAP attributes are continuous rather than binary measures — particularly in complex systems.

Managing partitions enables the “easy” choice of C& A
Mitigate effect of P on C & A for the cases that P can occur.

A function/operation-level decision, not system level.
e.g. an ATM can still accept deposits during Partition.

Latency and the Partition decision are closely related

Designers can set time bounds intentionally according to target response times;
systems with tighter bounds will likely enter partition mode more often and at times
when the network is merely slow and not actually partitioned.

*http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed



ANERN

Paxos algorithm comes as close as possible (in
known CompSci) to achieving CAP
CA distributed state machine in normal operation
Multi-master, quorum based (can define quorum
size, but must be at least bare majority) -
Consensus
Can tolerate any kind of partition so long as
quorum is maintained (becomes “unavailable” for
clients of non-quorum nodes)

Formally proven to provide reliable distributed
state transitions (updates, aka “availability”)

v' But not infinite time

v' In practice, it works out ok

Paxos: Correct Run

(
i
I
i
I

PROPOSE(n )

ﬁﬁEEEEEEEEff:::::::fhﬁhﬂ&‘

AGREE(n, v)

COMMIT( n, v )

e~

CEPT(n
N (—




v' Shift that kind of work off to other systems
v E.g. DynamoDB conditional writes (idempotent too!)
v Update only if the specified condition is met

// This updates the price only if current price is 10.00.
expectedValues.put("Price",
new ExpectedAttributeValue()
withValue(new AttributeValue().withN(“10.00")));




Data Tier Scalability

The bane of the Architect’s existence

© 2012 Amazon.com, Inc. and'its affiliates. All rights resenved. May not



Vertical Scaling

“We need a bigger box”

Simplest Approach
Can now leverage PIOPS é’g:{__;%

High 1/0 for NoSQL DBs
Easy to change instance sizes

Will hit an “end point” eventually

hil.4xlarge

m2 .4xlarge : \ i
ml.small o

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



Master/Slave Horizontal Scaling Reasonably simple to adapt to

« Can now leverage PIOPS

S « [Easy to change instance sizes

Will hit an “end point” eventually




Sharded Horizontal Scaling « More complex at application layer
« ORM support can help

* No practical limit on scalability

“With great power comes . Operation
great responsibility” complexity/sophistication

Shard by function or key-space
.+ RDBMS or NoSQL

o, %,

=,
i,
© ?‘512 Amazon.com, Inc. and its affiliates. All rights resefVed. May not be copied, modified or distributed in whole of in part without the express consent of Amazon.com, I



Horizontal Scaling — Fully Managed

DynamoDB

Provisioned throughput NoSQL database
Fast, predictable performance

Fully distributed, fault tolerant
architecture

Considerations for non-uniform data

Feature Details
Provisioned Dial up or down provisioned read/write
throughput capacity
Predictable Average single digit millisecond latencies
performance from SSD backed infrastructure

Strong consistency

Fault tolerant

Monitoring

Secure

Elastic
MapReduce

Be sure you are reading the most up to
date values

Data replicated across availability zones

Integrated to CloudWatch

Integrates with AWS Identity and Access
Management (IAM)

Integrates with Elastic MapReduce for
complex analytics on large datasets



Creating a Masterpiece
for the Ages

© 2012 Amazon.com, Inc. and its affiliates. All rights



Use these techniques
(and many, many others)

SITUATIONALLY




AWARENESS

of the options is the first
step to good design

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.



SCALING

Is the ability to move
bottlenecks around to
the least expensive part
of the architecture



AWS

makes this easier - so
vour application is not
the victim of its own
success



For perspective...

Please welcome

James Hamilton




5. We'll add monitoring & alerting as we get production
experience & a baseline

4., We don’t need incremental deployment for V1

3. We'll get into production & add automated testing
before second release

2. All our test cases are passing

1. We can partition the database when needed - We
have 10x capacity needed for first year



Thank You

Questions?

@simon_elisha
http://aws.amazon.com/podcast

#reinvent



We are sincerely eager to
hear your FEEDBACK on this
presentation and on re:Invent.

Please fill out an evaluation
form when you have a
chance

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent




