
Building Web-Scale Applications with AWS

Simon Elisha / Principal Solution Architect / @simon_elisha

James Hamilton / Vice President & Distinguished Engineer

#reinvent
© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

8

Months of Travel

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

7

Minutes of Terror

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

100,000

Concurrent Viewers

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

0

Second Chances

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

A Tale of Web Scale

Streaming images and video

of Curiosity’s landing on

Mars
• Multiple Regions – fully automated

• Each stack handles up to 25 Gbps of traffic

• Dynamically handles spikes in load

• Spreads workload across geographies

• Over 100 instances per stack

• All gone away now…

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

The Artist compared to the Architect

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Primary Colors

Fundamental Design Considerations for
Web-Scale Applications on AWS

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

1. Design for Failure

"Everything fails, all the time"
Werner Vogels, CTO Amazon.com

and nothing will really fail

• Avoid single points of failure
• Assume everything fails, and design backwards
• Goal: Applications should continue to function even if the underlying physical

hardware fails or is removed or replaced
© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

2. Loose coupling sets you free
The looser they're coupled, the bigger they scale

• Independent components
• Design everything as a black box
• De-couple interactions
• Load-balance clusters

Controller A Controller B Controller C

Controller A Controller B Controller C

Q Q Q

Tight Coupling

Loose Coupling
using Queues

Use Amazon SQS as Buffers

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

3. Implement Elasticity

• Don’t assume health or fixed location of components
• Use designs that are resilient to reboot and re-launch
• Bootstrap your instances: Instances on boot will ask a question

“Who am I & what is my role?”
• Enable dynamic configuration

Elasticity is a fundamental property of the Cloud

• Use Auto-scaling (Free)
• Use [Elastic] Load Balancing on multiple layers
• Use configurations in SimpleDB/S3/etc to bootstrap instance

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

4. Build Security in every layer

With the cloud, you lose a little bit of
physical control, but not your ownership

Design with Security in mind

• Create distinct Security Groups for each Amazon EC2 tier
• Use security group-based rules to control access between layers
• Use Virtual Private Cloud (VPC) to combine internal and AWS assets
• Encrypt data “at-rest” in Amazon S3
• Encrypt data “in-transit” (SSL)
• Consider encrypted file systems in EC2 for sensitive data
• Use AWS Identity & Access Management (IAM)
• Use MultiFactor Authentication (MFA)

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

5. Don't fear constraints

More RAM? Distribute load across machines
Shared distributed cache

Re-think architectural constraints

Better IOPS on my database?
Multiple read-only / sharding / DB clustering / Caching /
Provisioned IOPs / SSD instances

Your hardware failed or messed up config?
Simply throw it away and switch to new hardware with
no additional cost

Performance
Caching at different levels (Page, Render, DB)

Hardware Config does not
match?
Implement Elasticity

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

6. Think Parallel

• Multi-threading and concurrent requests to cloud services
• Run parallel MapReduce Jobs
• Use Elastic Load Balancing to distribute load across multiple servers
• Decompose a Job into its simplest form

Serial and Sequential are now history

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

7. Leverage multiple storage options

Amazon Simple Storage Service (Amazon S3): large static objects
Amazon Glacier: long term archival of objects
Amazon CloudFront: content distribution
Amazon DynamoDB: infinitely scalable NoSQL “Big Tables”
Amazon ElastiCache: in memory caching
Amazon CloudSearch: fast, highly-scalable search functionality
Amazon Elastic Compute Cloud (Amazon EC2) local disk drive : transient data
Amazon Elastic Block Store (Amazon EBS): persistent storage + snapshots on S3
Amazon EBS PIOPs: consistent, persistent storage for any RDBMS + Snapshots on S3
Amazon Relation Database Service (Amazon RDS): RDBMS service –
Automated and Managed MySQL, Oracle & SQL Server
Amazon EC2 High I/O Instances: high performance, local SSD-backed storage

One size DOES NOT fit all

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

More Advanced Techniques

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Stateless Software Architecture

Does not retain information about the last
session into the next – e.g. user data,
parameters, logic outcomes.

You know – like that thing called the HTTP
Protocol…

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Compute Storage

AWS Global Infrastructure

Database

App Services

Deployment & Administration

Networking

Lets you Auto Scale

Auto Scaling
Automatic re-sizing of compute clusters based on demand

Trigger auto-

scaling policy

Feature Details

Control Define minimum and maximum instance pool
sizes and when scaling and cool down occurs.

Integrated to Amazon
CloudWatch

Use metrics gathered by CloudWatch to drive
scaling.

Instance types Run Auto Scaling for On-Demand and Spot
Instances. Compatible with VPC.

as-create-auto-scaling-group MyGroup

 --launch-configuration MyConfig

 --availability-zones eu-west-1a

 --min-size 4

 --max-size 200

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Compute Storage

AWS Global Infrastructure

Database

App Services

Deployment & Administration

Networking

…and Spread the Load

Elastic Load Balancing
• Create highly scalable applications

• Distribute load across EC2 instances in

multiple availability zones
Feature Details

Available Load balance across instances in multiple
Availability Zones

Health checks Automatically checks health of instances and
takes them in or out of service

Session stickiness Route requests to the same instance

Secure sockets layer Supports SSL offload from web and application
servers with flexible cipher support

Monitoring Publishes metrics to CloudWatch

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

But usually some state has to reside somewhere

 Cookies in browser

Memory-resident session manager

 Session database

Framework provided session handler

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

So this store of state needs to be…

Performant

Scalable

Reliable

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Where should session state reside?

Trigger auto-

scaling policy

Session State
Service

Not Here

Here
State must reside OUTSIDE

the scope of the elements you
wish to scale

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

And what do I build it on?

The state service itself must
be well architected

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

“If at first you don’t succeed…”

Retry logic is fundamental to scalable
design

But without back-off logic, your service
may still “break”

Use Idempotency as “secret sauce”

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Without retries, the Web would not work.
Assumes things will fail, and we will need to retry.

What is the difference between a bad network and a failing host?
Nothing that is perceptible to client semantics.
So long as another node is available to accept the request and the system
is idempotent by design.

Retry is now familiar behavior for users.
E.g. refresh your web page, refresh Twitter, etc.

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Beware “Thundering Herds”
(and their ilk)

How do you service a large set of requests
all at the same time?

What if your service failed or degraded and
then tries to restore in the face of large
pent-up transaction volumes?

What if lots of customers keep hitting
“refresh” on their requests?

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Back-off logic ensures that retries do
not all “consolidate”

Without this, the service will be flooded
and may enter a vicious cycle

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

currentRetry = 0

 DO

 status = execute Amazon SimpleDB request

 IF status = success OR status = client error (4xx)

 set retry to false

 process the response or client error as appropriate

 ELSE

 set retry to true

 currentRetry = currentRetry + 1

 wait for a random delay between 0 and (4^currentRetry * 100) milliseconds

 END-IF

 WHILE (retry = true AND currentRetry < MaxNumberOfRetries)

Exponential Backoff Algorithm

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Idempotence

The property of an operation whereby it
can be applied multiple times without
changing the result beyond the initial
application.

It keeps you “safe” because executing the
same thing twice (or more) has no more
affect than doing it once.
 © 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

PROMPT> ec2-run-instances ami-b232d0db -k gsg-keypair --client-

token 550e8400-e29b-41d4-a716-446655440000

EC2 Instance Creation Example

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

CAP Theorem

Consistency

Availability
Partition
Tolerance

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Synchronously replicated databases in normal
operation

Read-only storage systems, synchronously
replicated databases when partitioned,
membase

Multi-master / asynchronously replicated
databases (Active Directory, Outlook and
Exchange, DNS)

CA

CP

AP

CAP Examples…

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

CAP Theory 12 Years on…

Not as simple as “choose 2 out of 3”

Mitigate effect of P on C & A for the cases that P can occur.

Managing partitions enables the “easy” choice of C & A

Partitions are rare – so why sacrifice C or A for a rare/managed event?
CAP attributes are continuous rather than binary measures – particularly in complex systems.

*http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

?

?

?

?

e.g. an ATM can still accept deposits during Partition.

A function/operation-level decision, not system level.

Designers can set time bounds intentionally according to target response times;
systems with tighter bounds will likely enter partition mode more often and at times
when the network is merely slow and not actually partitioned.

Latency and the Partition decision are closely related

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Paxos clusters

 Paxos algorithm comes as close as possible (in
known CompSci) to achieving CAP

 CA distributed state machine in normal operation
 Multi-master, quorum based (can define quorum

size, but must be at least bare majority) -
Consensus

 Can tolerate any kind of partition so long as
quorum is maintained (becomes “unavailable” for
clients of non-quorum nodes)

 Formally proven to provide reliable distributed
state transitions (updates, aka “availability”)
 But not infinite time
 In practice, it works out ok

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Paxos sounds tricky to implement…

 Shift that kind of work off to other systems
 E.g. DynamoDB conditional writes (idempotent too!)

 Update only if the specified condition is met

// This updates the price only if current price is 10.00.

 expectedValues.put("Price",

 new ExpectedAttributeValue()

 .withValue(new AttributeValue().withN(“10.00")));
© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Data Tier Scalability

The bane of the Architect’s existence

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Vertical Scaling

“We need a bigger box”
• Simplest Approach

• Can now leverage PIOPS

• High I/O for NoSQL DBs

• Easy to change instance sizes

• Will hit an “end point” eventually

hi1.4xlarge

m2.4xlarge

m1.small

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Master/Slave Horizontal Scaling • Reasonably simple to adapt to

• Can now leverage PIOPS

• Easy to change instance sizes

• Will hit an “end point” eventually

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Sharded Horizontal Scaling • More complex at application layer

• ORM support can help

• No practical limit on scalability

• Operational

complexity/sophistication

• Shard by function or key-space

• RDBMS or NoSQL

“With great power comes

great responsibility”

Hash Ring

A

B C

D

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Horizontal Scaling – Fully Managed

DynamoDB
• Provisioned throughput NoSQL database

• Fast, predictable performance

• Fully distributed, fault tolerant

architecture

• Considerations for non-uniform data

Feature Details

Provisioned
throughput

Dial up or down provisioned read/write
capacity

Predictable
performance

Average single digit millisecond latencies
from SSD backed infrastructure

Strong consistency Be sure you are reading the most up to
date values

Fault tolerant Data replicated across availability zones

Monitoring Integrated to CloudWatch

Secure Integrates with AWS Identity and Access
Management (IAM)

Elastic
MapReduce

Integrates with Elastic MapReduce for
complex analytics on large datasets

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Creating a Masterpiece
for the Ages

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Use these techniques
(and many, many others)

SITUATIONALLY

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

AWARENESS

of the options is the first
step to good design

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

SCALING

is the ability to move
bottlenecks around to

the least expensive part
of the architecture

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

AWS

makes this easier – so
your application is not
the victim of its own

success

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

For perspective…

Please welcome

James Hamilton

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

5. We’ll add monitoring & alerting as we get production
experience & a baseline

4. We don’t need incremental deployment for V1

3. We’ll get into production & add automated testing
before second release

2. All our test cases are passing

1. We can partition the database when needed – We
have 10x capacity needed for first year

Top 10 5 Ways to Early Post Mortem

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

Thank You

Questions?

@simon_elisha

http://aws.amazon.com/podcast

#reinvent

© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

We are sincerely eager to

hear your FEEDBACK on this

presentation and on re:Invent.

Please fill out an evaluation

form when you have a
chance.

#reinvent
© 2012 Amazon.com, Inc. and its affiliates. All rights reserved. May not be copied, modified or distributed in whole or in part without the express consent of Amazon.com, Inc.

