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Database Systems in the Cloud
 Using cloud technologies plus SQL database 

systems to build a scalable highly available database 
service in the cloud

 Better deployment of database systems in the cloud

 Better support for database systems by cloud 
technologies
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Why Database Systems?
 Databases are important!

 A narrow interface to the user (SQL)

 Transactions offer well defined semantics for data 
access and update

 Well defined internal structures (e.g., buffer pool) and 
query execution operators (e.g., hash joins)

 Accurate performance models for query execution 
time and resource consumption
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Outline
 Introduction
 RemusDB: Database high availability using 

virtualization
Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, 
Ashraf Aboulnaga, Kenneth Salem, and Andrew Warfield. 
“RemusDB: Transparent High Availability for Database 
Systems,” In Proceedings of the VLDB Endowment (PVLDB), 
2011.
(Best Paper Award)

 DBECS: Database high availability (and scalability) 
using eventually consistent cloud storage 

 Conclusion
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High Availability
 A database system is highly available if it remains 

accessible to its users in the face of hardware failures

 High availability (HA) is becoming a requirement for 
almost all database applications, not just mission 
critical ones

 Key issues:
 Maintaining database consistency in the face of failure
 Minimizing the impact on performance during normal 

operation and after a failure
 Reducing the complexity and administrative overhead of HA
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Active/Standby Replication

 A copy of the database is stored on two servers, a primary and 
a backup

 Primary server (active) accepts user requests and performs 
database updates

 Changes to database propagated to backup server (standby)
by propagating the transaction log

 Upon failure, backup server takes over as primary
6
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Active/Standby Replication
 Active/standby replication is complex to implement in 

the DBMS, and complex to administer
 Propagating the transaction log
 Atomic handover from primary to backup on failure
 Redirecting client requests to backup after failure
 Minimizing effect on performance (e.g., warming the buffer 

pool of the backup)

 Our approach: Implement active/standby replication 
at the virtual machine layer
 Push the complexity out of the DBMS
 High availability as a service: Any DBMS can be made 

highly available with little or no code changes
 Low performance overhead
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Changes to VM State

Transparent HA for DBMS

 RemusDB: efficient and transparent active/standby high 
availability for DBMS implemented in the virtualization layer
 Propagates all changes in VM state from primary to backup
 High availability with no code changes to the DBMS
 Completely transparent failover from primary to backup
 Failover to a warmed up backup server
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Remus and VM Checkpointing
 RemusDB is based on Remus, a high availability solution 

that is now part of the Xen virtual machine monitor

 Remus maintains a replica of a running VM on a separate 
physical machine

 Periodically replicates state changes from the primary VM 
to the backup VM using whole machine checkpointing
 Checkpointing is based on extensions to live VM migration

 Provides transparent failover with only seconds of 
downtime
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Remus Checkpoints
 Remus divides time into epochs (~25ms)
 Performs a checkpoint at the end of each epoch

1. Suspend primary VM
2. Copy all state changes to a buffer in Domain 0
3. Resume primary VM
4. Send asynchronous message to backup containing state changes
5. Backup VM applies state changes
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Remus Checkpoints

 After a failure, the backup resumes execution from the 
latest checkpoint
 Any work done by the primary during epoch C will be lost (unsafe)

 Remus provides a consistent view of execution to clients
 Any network packets sent during an epoch are buffered until the 

next checkpoint
 Guarantees that a client will see results only if they are based on 

safe execution
 Same principle is also applied to disk writes
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Remus and DB Workloads

DBMS
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 RemusDB implements optimizations to reduce the overhead of 
protection for database workloads
 Incurs 3% overhead and recovers from failures in 3 seconds
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RemusDB

 Remus optimized for protecting database workloads
 Memory optimizations

 Database workloads tend to modify a lot of memory in each epoch 
(buffer pool, working memory for queries, etc.)

 Reduce checkpointing overhead
 Asynchronous checkpoint compression
 Disk read tracking
 Memory deprotection

 Network optimization
 Some database workloads are sensitive to the network latency 

added by buffering network packets
 Exploit semantics of database transactions to avoid buffering

 Commit protection
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Async Checkpoint Compression

 Database workloads typically involve a large set of 
frequently changing pages of memory (e.g., buffer pool 
pages)
 Results in a large amount of replication traffic

 The DBMS often changes only a small part of the pages
 Data that is replicated contains redundancy

 Reduce replication traffic by only sending the changes 
to the memory pages (and send them compressed)
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Async Checkpoint Compression
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Disk Read Tracking

DB BP

Active VM Standby VM

DBMS

P Changes to VM StateP
DB
P

BP
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 DBMS loads pages from disk into its buffer pool (BP)
 Clean to DBMS, dirty to Remus

 Remus synchronizes dirty BP pages in every checkpoint
 Synchronization of clean BP pages is unnecessary

 Can be read from disk at the backup

P
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Disk Read Tracking

 Track the memory pages into which disk reads are placed

 Do not mark these pages as dirty until they are actually 
modified

 Add an annotation to the replication stream indicating 
the disk sectors to read to reconstruct these pages
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Memory Deprotection
 A mechanism that we implemented but did not find 

useful!

 Allow the DBMS to declare regions of its memory as 
deprotected (i.e., not replicated in checkpoints)
 Hot memory regions such as buffer pool descriptors
 Memory regions that can easily be reconstructed such as 

working memory for query processing operators

 After a failure, a recovery handler at the backup 
would reconstruct or drop the deprotetced memory 
regions
 Memory deprotection is not transparent to the DBMS
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Memory Deprotection
 Memory deprotection not useful for our workloads 

because:
 Disk read tracking (which is transparent) gets us the same 

benefit for the buffer pool
 CPU overhead of tracking deprotected pages is high so the 

benefit that we get from deprotection is low
 Benefit does not justify the complex non-transparent 

interafce

 May be useful for other applications and workloads
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Network Optimization

 Remus buffers every outgoing network packet
 Ensures clients never see results of unsafe execution
 But increases round trip latency by 2-3 orders of magnitude
 Largest source of overhead for many database workloads
 Unnecessarily conservative for database systems

 Database systems provide transactions with clear 
consistency and durability semantics
 Remus’s TCP-level per-checkpoint transactions are redundant

 Provide an interface to allow a DBMS to decide which 
packets are protected (i.e., buffered until the next 
checkpoint) and which are unprotected
 Implemented as a new setsockopt() option in Linux
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Commit Protection
 Commit Protection

 DBMS only protects transaction control packets (BEGIN 
TRANSACTION, COMMIT, ABORT)

 Other packets are unprotected

 After failover, a recovery handler runs in the DBMS 
at the backup
 Aborts all in-flight transaction where the client connection 

was in unprotected mode

 Not transparent to the DBMS
 Requires minor modifications to the client connection layer
 103 LoC for PostgreSQL, 85 LoC for MySQL

 Transaction safety is guaranteed
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Experimental Setup
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Primary server fails

Failover
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Normal Operation
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Benefits of RemusDB
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 High availability for any DBMS with no code changes
 Or with very little code changes if we use commit protection
 “High availability as a service”

 Automatic and fully transparent failover to a warmed 
up system

 Next steps
 Reprotection after a failure
 One server as the backup for multiple primary servers
 Administration of RemusDB failover



Outline
 Introduction
 RemusDB: Database high availability using 

virtualization
 DBECS: Database high availability (and scalability) 

using eventually consistent cloud storage
(Under submission)

 Conclusion
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 Many cloud storage systems
 Amazon S3
 HBase
 Cassandra
 …and more

 Scalable, distributed, fault tolerant
 Support simple read and write operations

 write(key, value)
 value = read(key)

 Atomicity only for single-row operations
 No atomic multi-row reads or writes
 Interface much simpler than SQL (“NoSQL”)

Cloud Storage
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Databases Over Cloud Storage
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 Goal: A scalable, elastic, highly available, multi-
tenant database service that supports SQL and 
ACID transactions
 Cloud storage system provides scalability, elasticity, and 

availability. DBMS provides SQL and ACID transactions.
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DBECS
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 DBECS: Databases on Eventually Consistent Stores
 Can replace MySQL with another DBMS
 Need Cassandra since we want eventual consistency
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Why Cassandra?
 Relaxing consistency reduces the write latency of 

Cassandra and makes it partition tolerant 

 Cassandra stores semi-structured rows that belong to 
column families
 Rows are accessed by a key
 Rows are replicated and distributed by hashing keys

 Multi-master replication for each row
 Enables Cassandra to run in multiple data centers
 Also gives us partition tolerance
 DBECS leverages this for disaster tolerance
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Why Cassandra?
 Client controls the consistency vs. latency trade-off 

for each read and write operation
 write(1)/read(1) – fast but not necessarily consistent
 write(ALL)/read(ALL) – consistent but may be slow
 We posit that database systems can control this trade-

off quite well

 Client decides the serialization order of updates
 Important for consistency in DBECS

 Scalable, elastic, highly available
 Like many other cloud storage systems!
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Consistency vs. Latency
 value = read(1, key, column)

 Send read request to all replicas of the row (based on key)
 Return first response received to client
 Returns quickly but may return stale data

 value = read(ALL, key, column)
 Send read request to all replicas of the row (based on key)
 Wait until all replicas respond and return latest version to 

client
 Consistent but as slow as the slowest replica

 write(1) vs. write(ALL)
 Send write request to all replicas
 Client provides a timestamp for each write

 Other consistency levels are supported
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Consistency vs. Latency
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Experiment on Amazon EC2 – Yahoo! Cloud 
Serving Benchmark (YCSB) – 4  Cassandra Nodes

Same EC2 Availability Zone



Consistency vs. Latency
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Two EC2 Availability Zones
Same EC2 Geographic Region



Consistency vs. Latency
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Two EC2 Regions
(US East and US West)



Databases Over Cassandra
 Make Cassandra look like a disk to the DBMS 

tenants
 Databases stored in one column (in one column family)
 key = DBMS id + disk block id
 value = contents of disk block

 Cassandra I/O layer maps DBMS reads and writes to 
Cassandra reads and writes
 Which consistency level to use?
 write(1)/read(1): Fast but may return stale data and provides 

no durability guarantees. Not good for a DBMS.
 write(ALL)/read(1): Returns no stale data and guarantees 

durability but writes are slow.
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Goal of DBECS
 Achieve the performance of write(1)/read(1) while 

maintaining consistency, durability, and 
availability

 Optimistic I/O
 Use write(1)/read(1) and detect stale data

 Client-controlled synchronization
 Make database updates safe in the face of failures
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Optimistic I/O
 Key observation: with write(1)/read(1), most reads 

will not return stale data
 Single writer for each database block
 Reads unlikely to come soon after writes because of DBMS 

buffer pool
 Cassandra sends writes to all replicas
 Network topology means that first replica to acknowledge a 

write will likely be the first to acknowledge a read

 So use write(1)/read(1), detect stale data, and 
recover from it
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Optimistic I/O
 Detecting stale data

 Cassandra I/O stores a version number with each database 
block and remembers the current version of each block

 Checks the version number returned by read(1) against the 
current version number

 Recovering from stale data
 Use read(ALL)
 Retry the read(1)

 When read(1) detects stale data, Cassandra brings the 
stale replicas up to date (read repair)

 We only store version information about recently 
accessed database blocks
 For the rest, use read(ALL)
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Dealing with Failures
 With write(1), data is not safe
 With read(ALL), will block if one replica is down
 Naive solution: use write(ALL)/read(QUORUM)
 Key observation: Transaction semantics tell us 

when writes must be safe and when the DBMS 
can tolerate unsafe writes
 Write Ahead Logging tells us when data needs to be safe 

(write log before data and flush log on commit)
 Database systems explicitly synchronize data at the 

necessary points, for example, by using fsync()
 Need an fsync() for Cassandra
 Can abort transactions if unsafe writes are lost
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Client-Controlled Sync
 Added new type of write in Cassandra: write(CSYNC)

 Like write(1), but stores the key of the written row in a 
sync_pending list

 Cassandra client can issue a CSync() call to synchronize all 
rows in the sync_pending list

 To protect against failure, Cassandra I/O
 Uses write(CSYNC) instead of write(1)
 Calls CSync() whenever the DBMS calls fsync()

 Data or log pages are made safe only when needed
 Time between write() and CSync() enables latency hiding

 Uses read(QUORUM)
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Examples of Failures
 Loss of a Cassandra node

 Handled by Cassandra
 Completely transparent to DBMS

 Loss of the primary data center (Disaster Recovery)
 Cassandra needs to be running in multiple data centers
 Restart the DBMS in a backup data center 
 Log-based recovery brings the database up to date in a 

transactionally consistent way
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Throughput
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MySQL and  Cassandra in Amazon EC2
TPC-C Workload – 6 Cassandra Nodes



Scalability
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Adding  DBMS Tenants and Proportionally 
Increasing the Number of Cassandra Nodes



High Availability
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Failure of Cassandra Node in Primary Data Center



High Availability
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Failure of Cassandra Node in Secondary DC



Disaster Recovery
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Loss of Primary Data Center



Benefits of DBECS
 Scalable and elastic storage capacity and bandwidth
 Scalable in the number of database tenants
 Highly available and disaster tolerant storage tier
 SQL and ACID transactions for the tenants
 An interesting point in the spectrum of answers 

to the question: “Can consistency scale?”

 Missing from DBECS (next steps)
 Always-up hosted DBMS tenants

 DBECS enables DBMS tenant to use standard log-based 
recovery, but tenant incurs significant down time

 Scaling of individual hosted DBMS tenants
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Conclusion
 High availability (and scalability) for database 

systems can be provided by the cloud infrastructure

 Taking advantage of the well-known characteristics of 
database systems can greatly enhance the solutions

 RemusDB: Efficient and transparent database high 
availability in the virtualization layer

 DBECS: Scalability and high availability for database 
clients built on the Cassandra cloud storage system
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