
High Availability for Database
Systems in Cloud Computing

Environments

Ashraf Aboulnaga
University of Waterloo

Acknowledgments
 University of Waterloo

 Prof. Kenneth Salem
 Umar Farooq Minhas
 Rui Liu (post-doctoral fellow)

 University of British Columbia
 Prof. Andrew Warfield
 Shriram Rajagopalan
 Brendan Cully

1

Database Systems in the Cloud
 Using cloud technologies plus SQL database

systems to build a scalable highly available database
service in the cloud

 Better deployment of database systems in the cloud

 Better support for database systems by cloud
technologies

2

Why Database Systems?
 Databases are important!

 A narrow interface to the user (SQL)

 Transactions offer well defined semantics for data
access and update

 Well defined internal structures (e.g., buffer pool) and
query execution operators (e.g., hash joins)

 Accurate performance models for query execution
time and resource consumption

3

Outline
 Introduction
 RemusDB: Database high availability using

virtualization
Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully,
Ashraf Aboulnaga, Kenneth Salem, and Andrew Warfield.
“RemusDB: Transparent High Availability for Database
Systems,” In Proceedings of the VLDB Endowment (PVLDB),
2011.
(Best Paper Award)

 DBECS: Database high availability (and scalability)
using eventually consistent cloud storage

 Conclusion

4

High Availability
 A database system is highly available if it remains

accessible to its users in the face of hardware failures

 High availability (HA) is becoming a requirement for
almost all database applications, not just mission
critical ones

 Key issues:
 Maintaining database consistency in the face of failure
 Minimizing the impact on performance during normal

operation and after a failure
 Reducing the complexity and administrative overhead of HA

5

Active/Standby Replication

 A copy of the database is stored on two servers, a primary and
a backup

 Primary server (active) accepts user requests and performs
database updates

 Changes to database propagated to backup server (standby)
by propagating the transaction log

 Upon failure, backup server takes over as primary
6

DB

DBMS

Primary
Server

DB

DBMS

Backup
Server

Database Changes
(Transaction Log)

Primary
Server

Active/Standby Replication
 Active/standby replication is complex to implement in

the DBMS, and complex to administer
 Propagating the transaction log
 Atomic handover from primary to backup on failure
 Redirecting client requests to backup after failure
 Minimizing effect on performance (e.g., warming the buffer

pool of the backup)

 Our approach: Implement active/standby replication
at the virtual machine layer
 Push the complexity out of the DBMS
 High availability as a service: Any DBMS can be made

highly available with little or no code changes
 Low performance overhead

7

Changes to VM State

Transparent HA for DBMS

 RemusDB: efficient and transparent active/standby high
availability for DBMS implemented in the virtualization layer
 Propagates all changes in VM state from primary to backup
 High availability with no code changes to the DBMS
 Completely transparent failover from primary to backup
 Failover to a warmed up backup server

Backup
Server

DB DBMS

Primary
Server

VM

DBDBMS

VM

Primary
Server

8

Remus and VM Checkpointing
 RemusDB is based on Remus, a high availability solution

that is now part of the Xen virtual machine monitor

 Remus maintains a replica of a running VM on a separate
physical machine

 Periodically replicates state changes from the primary VM
to the backup VM using whole machine checkpointing
 Checkpointing is based on extensions to live VM migration

 Provides transparent failover with only seconds of
downtime

9

Remus Checkpoints
 Remus divides time into epochs (~25ms)
 Performs a checkpoint at the end of each epoch

1. Suspend primary VM
2. Copy all state changes to a buffer in Domain 0
3. Resume primary VM
4. Send asynchronous message to backup containing state changes
5. Backup VM applies state changes

10

Periodic Checkpoints
(Changes to VM State)

Primary
Server

Domain 0

Backup
Server

Domain 0

Xen VMM

Primary
VM

Xen VMM

Backup
VM

Remus Checkpoints

 After a failure, the backup resumes execution from the
latest checkpoint
 Any work done by the primary during epoch C will be lost (unsafe)

 Remus provides a consistent view of execution to clients
 Any network packets sent during an epoch are buffered until the

next checkpoint
 Guarantees that a client will see results only if they are based on

safe execution
 Same principle is also applied to disk writes

11

Remus and DB Workloads

DBMS
Client

Primary
Server

query response
(unprotected)

no protection
processing

response time
(unprotected)

Remus protectionnetwork
buffering

response
(protected)

overhead of
protection

up to 32 %

response time
(protected)

 RemusDB implements optimizations to reduce the overhead of
protection for database workloads
 Incurs 3% overhead and recovers from failures in 3 seconds

12

RemusDB

 Remus optimized for protecting database workloads
 Memory optimizations

 Database workloads tend to modify a lot of memory in each epoch
(buffer pool, working memory for queries, etc.)

 Reduce checkpointing overhead
 Asynchronous checkpoint compression
 Disk read tracking
 Memory deprotection

 Network optimization
 Some database workloads are sensitive to the network latency

added by buffering network packets
 Exploit semantics of database transactions to avoid buffering

 Commit protection

13

Send less data

Protect less memory

Async Checkpoint Compression

 Database workloads typically involve a large set of
frequently changing pages of memory (e.g., buffer pool
pages)
 Results in a large amount of replication traffic

 The DBMS often changes only a small part of the pages
 Data that is replicated contains redundancy

 Reduce replication traffic by only sending the changes
to the memory pages (and send them compressed)

14

Async Checkpoint Compression

Protected VM

Xen VMM

Dirty
Pages

(epoch i)

LRU Cache

Dirty pages from
epochs [1 … i-1]

to backup
Compute delta
and compress

Domain 0

15

Disk Read Tracking

DB BP

Active VM Standby VM

DBMS

P Changes to VM StateP
DB
P

BP

DBMS

 DBMS loads pages from disk into its buffer pool (BP)
 Clean to DBMS, dirty to Remus

 Remus synchronizes dirty BP pages in every checkpoint
 Synchronization of clean BP pages is unnecessary

 Can be read from disk at the backup

P

16

Disk Read Tracking

 Track the memory pages into which disk reads are placed

 Do not mark these pages as dirty until they are actually
modified

 Add an annotation to the replication stream indicating
the disk sectors to read to reconstruct these pages

17

Memory Deprotection
 A mechanism that we implemented but did not find

useful!

 Allow the DBMS to declare regions of its memory as
deprotected (i.e., not replicated in checkpoints)
 Hot memory regions such as buffer pool descriptors
 Memory regions that can easily be reconstructed such as

working memory for query processing operators

 After a failure, a recovery handler at the backup
would reconstruct or drop the deprotetced memory
regions
 Memory deprotection is not transparent to the DBMS

18

Memory Deprotection
 Memory deprotection not useful for our workloads

because:
 Disk read tracking (which is transparent) gets us the same

benefit for the buffer pool
 CPU overhead of tracking deprotected pages is high so the

benefit that we get from deprotection is low
 Benefit does not justify the complex non-transparent

interafce

 May be useful for other applications and workloads

19

Network Optimization

 Remus buffers every outgoing network packet
 Ensures clients never see results of unsafe execution
 But increases round trip latency by 2-3 orders of magnitude
 Largest source of overhead for many database workloads
 Unnecessarily conservative for database systems

 Database systems provide transactions with clear
consistency and durability semantics
 Remus’s TCP-level per-checkpoint transactions are redundant

 Provide an interface to allow a DBMS to decide which
packets are protected (i.e., buffered until the next
checkpoint) and which are unprotected
 Implemented as a new setsockopt() option in Linux

20

Commit Protection
 Commit Protection

 DBMS only protects transaction control packets (BEGIN
TRANSACTION, COMMIT, ABORT)

 Other packets are unprotected

 After failover, a recovery handler runs in the DBMS
at the backup
 Aborts all in-flight transaction where the client connection

was in unprotected mode

 Not transparent to the DBMS
 Requires minor modifications to the client connection layer
 103 LoC for PostgreSQL, 85 LoC for MySQL

 Transaction safety is guaranteed

21

Experimental Setup

Backup
Server

DB
MySQL /

PostgreSQL
(Active VM)

Primary
Server

Xen 4.0

Gigabit Ethernet

DB
MySQL /

PostgreSQL
(Standby VM)

Xen 4.0

TPC-C / TPC-H

22

Primary server fails

Failover

23

TPC-C on MySQL

TPC-C on PostgreSQL

Normal Operation

Normal Operation

TPC-H on PostgreSQL

Benefits of RemusDB

26

 High availability for any DBMS with no code changes
 Or with very little code changes if we use commit protection
 “High availability as a service”

 Automatic and fully transparent failover to a warmed
up system

 Next steps
 Reprotection after a failure
 One server as the backup for multiple primary servers
 Administration of RemusDB failover

Outline
 Introduction
 RemusDB: Database high availability using

virtualization
 DBECS: Database high availability (and scalability)

using eventually consistent cloud storage
(Under submission)

 Conclusion

27

 Many cloud storage systems
 Amazon S3
 HBase
 Cassandra
 …and more

 Scalable, distributed, fault tolerant
 Support simple read and write operations

 write(key, value)
 value = read(key)

 Atomicity only for single-row operations
 No atomic multi-row reads or writes
 Interface much simpler than SQL (“NoSQL”)

Cloud Storage

28

Databases Over Cloud Storage

29

 Goal: A scalable, elastic, highly available, multi-
tenant database service that supports SQL and
ACID transactions
 Cloud storage system provides scalability, elasticity, and

availability. DBMS provides SQL and ACID transactions.

Cloud Storage System

Data Center

DBMS

App App

DBMS

App App

DBMS

App App

DBMS

App App

Cloud Storage System

Data Center

DBECS

30

 DBECS: Databases on Eventually Consistent Stores
 Can replace MySQL with another DBMS
 Need Cassandra since we want eventual consistency

InnoDB

Cassandra

MySQL

Cassandra I/O

Why Cassandra?
 Relaxing consistency reduces the write latency of

Cassandra and makes it partition tolerant

 Cassandra stores semi-structured rows that belong to
column families
 Rows are accessed by a key
 Rows are replicated and distributed by hashing keys

 Multi-master replication for each row
 Enables Cassandra to run in multiple data centers
 Also gives us partition tolerance
 DBECS leverages this for disaster tolerance

31

Why Cassandra?
 Client controls the consistency vs. latency trade-off

for each read and write operation
 write(1)/read(1) – fast but not necessarily consistent
 write(ALL)/read(ALL) – consistent but may be slow
 We posit that database systems can control this trade-

off quite well

 Client decides the serialization order of updates
 Important for consistency in DBECS

 Scalable, elastic, highly available
 Like many other cloud storage systems!

32

Consistency vs. Latency
 value = read(1, key, column)

 Send read request to all replicas of the row (based on key)
 Return first response received to client
 Returns quickly but may return stale data

 value = read(ALL, key, column)
 Send read request to all replicas of the row (based on key)
 Wait until all replicas respond and return latest version to

client
 Consistent but as slow as the slowest replica

 write(1) vs. write(ALL)
 Send write request to all replicas
 Client provides a timestamp for each write

 Other consistency levels are supported
33

Consistency vs. Latency

34

Experiment on Amazon EC2 – Yahoo! Cloud
Serving Benchmark (YCSB) – 4 Cassandra Nodes

Same EC2 Availability Zone

Consistency vs. Latency

35

Two EC2 Availability Zones
Same EC2 Geographic Region

Consistency vs. Latency

36

Two EC2 Regions
(US East and US West)

Databases Over Cassandra
 Make Cassandra look like a disk to the DBMS

tenants
 Databases stored in one column (in one column family)
 key = DBMS id + disk block id
 value = contents of disk block

 Cassandra I/O layer maps DBMS reads and writes to
Cassandra reads and writes
 Which consistency level to use?
 write(1)/read(1): Fast but may return stale data and provides

no durability guarantees. Not good for a DBMS.
 write(ALL)/read(1): Returns no stale data and guarantees

durability but writes are slow.

37

Goal of DBECS
 Achieve the performance of write(1)/read(1) while

maintaining consistency, durability, and
availability

 Optimistic I/O
 Use write(1)/read(1) and detect stale data

 Client-controlled synchronization
 Make database updates safe in the face of failures

38

Optimistic I/O
 Key observation: with write(1)/read(1), most reads

will not return stale data
 Single writer for each database block
 Reads unlikely to come soon after writes because of DBMS

buffer pool
 Cassandra sends writes to all replicas
 Network topology means that first replica to acknowledge a

write will likely be the first to acknowledge a read

 So use write(1)/read(1), detect stale data, and
recover from it

39

Optimistic I/O
 Detecting stale data

 Cassandra I/O stores a version number with each database
block and remembers the current version of each block

 Checks the version number returned by read(1) against the
current version number

 Recovering from stale data
 Use read(ALL)
 Retry the read(1)

 When read(1) detects stale data, Cassandra brings the
stale replicas up to date (read repair)

 We only store version information about recently
accessed database blocks
 For the rest, use read(ALL)

40

Dealing with Failures
 With write(1), data is not safe
 With read(ALL), will block if one replica is down
 Naive solution: use write(ALL)/read(QUORUM)
 Key observation: Transaction semantics tell us

when writes must be safe and when the DBMS
can tolerate unsafe writes
 Write Ahead Logging tells us when data needs to be safe

(write log before data and flush log on commit)
 Database systems explicitly synchronize data at the

necessary points, for example, by using fsync()
 Need an fsync() for Cassandra
 Can abort transactions if unsafe writes are lost

41

Client-Controlled Sync
 Added new type of write in Cassandra: write(CSYNC)

 Like write(1), but stores the key of the written row in a
sync_pending list

 Cassandra client can issue a CSync() call to synchronize all
rows in the sync_pending list

 To protect against failure, Cassandra I/O
 Uses write(CSYNC) instead of write(1)
 Calls CSync() whenever the DBMS calls fsync()

 Data or log pages are made safe only when needed
 Time between write() and CSync() enables latency hiding

 Uses read(QUORUM)

42

Examples of Failures
 Loss of a Cassandra node

 Handled by Cassandra
 Completely transparent to DBMS

 Loss of the primary data center (Disaster Recovery)
 Cassandra needs to be running in multiple data centers
 Restart the DBMS in a backup data center
 Log-based recovery brings the database up to date in a

transactionally consistent way

43

Throughput

44

MySQL and Cassandra in Amazon EC2
TPC-C Workload – 6 Cassandra Nodes

Scalability

45

Adding DBMS Tenants and Proportionally
Increasing the Number of Cassandra Nodes

High Availability

46

Failure of Cassandra Node in Primary Data Center

High Availability

47

Failure of Cassandra Node in Secondary DC

Disaster Recovery

48

Loss of Primary Data Center

Benefits of DBECS
 Scalable and elastic storage capacity and bandwidth
 Scalable in the number of database tenants
 Highly available and disaster tolerant storage tier
 SQL and ACID transactions for the tenants
 An interesting point in the spectrum of answers

to the question: “Can consistency scale?”

 Missing from DBECS (next steps)
 Always-up hosted DBMS tenants

 DBECS enables DBMS tenant to use standard log-based
recovery, but tenant incurs significant down time

 Scaling of individual hosted DBMS tenants

49

Conclusion
 High availability (and scalability) for database

systems can be provided by the cloud infrastructure

 Taking advantage of the well-known characteristics of
database systems can greatly enhance the solutions

 RemusDB: Efficient and transparent database high
availability in the virtualization layer

 DBECS: Scalability and high availability for database
clients built on the Cassandra cloud storage system

50

