
High Availability for Database
Systems in Cloud Computing

Environments

Ashraf Aboulnaga
University of Waterloo

Acknowledgments
 University of Waterloo

 Prof. Kenneth Salem
 Umar Farooq Minhas
 Rui Liu (post-doctoral fellow)

 University of British Columbia
 Prof. Andrew Warfield
 Shriram Rajagopalan
 Brendan Cully

1

Database Systems in the Cloud
 Using cloud technologies plus SQL database

systems to build a scalable highly available database
service in the cloud

 Better deployment of database systems in the cloud

 Better support for database systems by cloud
technologies

2

Why Database Systems?
 Databases are important!

 A narrow interface to the user (SQL)

 Transactions offer well defined semantics for data
access and update

 Well defined internal structures (e.g., buffer pool) and
query execution operators (e.g., hash joins)

 Accurate performance models for query execution
time and resource consumption

3

Outline
 Introduction
 RemusDB: Database high availability using

virtualization
Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully,
Ashraf Aboulnaga, Kenneth Salem, and Andrew Warfield.
“RemusDB: Transparent High Availability for Database
Systems,” In Proceedings of the VLDB Endowment (PVLDB),
2011.
(Best Paper Award)

 DBECS: Database high availability (and scalability)
using eventually consistent cloud storage

 Conclusion

4

High Availability
 A database system is highly available if it remains

accessible to its users in the face of hardware failures

 High availability (HA) is becoming a requirement for
almost all database applications, not just mission
critical ones

 Key issues:
 Maintaining database consistency in the face of failure
 Minimizing the impact on performance during normal

operation and after a failure
 Reducing the complexity and administrative overhead of HA

5

Active/Standby Replication

 A copy of the database is stored on two servers, a primary and
a backup

 Primary server (active) accepts user requests and performs
database updates

 Changes to database propagated to backup server (standby)
by propagating the transaction log

 Upon failure, backup server takes over as primary
6

DB

DBMS

Primary
Server

DB

DBMS

Backup
Server

Database Changes
(Transaction Log)

Primary
Server

Active/Standby Replication
 Active/standby replication is complex to implement in

the DBMS, and complex to administer
 Propagating the transaction log
 Atomic handover from primary to backup on failure
 Redirecting client requests to backup after failure
 Minimizing effect on performance (e.g., warming the buffer

pool of the backup)

 Our approach: Implement active/standby replication
at the virtual machine layer
 Push the complexity out of the DBMS
 High availability as a service: Any DBMS can be made

highly available with little or no code changes
 Low performance overhead

7

Changes to VM State

Transparent HA for DBMS

 RemusDB: efficient and transparent active/standby high
availability for DBMS implemented in the virtualization layer
 Propagates all changes in VM state from primary to backup
 High availability with no code changes to the DBMS
 Completely transparent failover from primary to backup
 Failover to a warmed up backup server

Backup
Server

DB DBMS

Primary
Server

VM

DBDBMS

VM

Primary
Server

8

Remus and VM Checkpointing
 RemusDB is based on Remus, a high availability solution

that is now part of the Xen virtual machine monitor

 Remus maintains a replica of a running VM on a separate
physical machine

 Periodically replicates state changes from the primary VM
to the backup VM using whole machine checkpointing
 Checkpointing is based on extensions to live VM migration

 Provides transparent failover with only seconds of
downtime

9

Remus Checkpoints
 Remus divides time into epochs (~25ms)
 Performs a checkpoint at the end of each epoch

1. Suspend primary VM
2. Copy all state changes to a buffer in Domain 0
3. Resume primary VM
4. Send asynchronous message to backup containing state changes
5. Backup VM applies state changes

10

Periodic Checkpoints
(Changes to VM State)

Primary
Server

Domain 0

Backup
Server

Domain 0

Xen VMM

Primary
VM

Xen VMM

Backup
VM

Remus Checkpoints

 After a failure, the backup resumes execution from the
latest checkpoint
 Any work done by the primary during epoch C will be lost (unsafe)

 Remus provides a consistent view of execution to clients
 Any network packets sent during an epoch are buffered until the

next checkpoint
 Guarantees that a client will see results only if they are based on

safe execution
 Same principle is also applied to disk writes

11

Remus and DB Workloads

DBMS
Client

Primary
Server

query response
(unprotected)

no protection
processing

response time
(unprotected)

Remus protectionnetwork
buffering

response
(protected)

overhead of
protection

up to 32 %

response time
(protected)

 RemusDB implements optimizations to reduce the overhead of
protection for database workloads
 Incurs 3% overhead and recovers from failures in 3 seconds

12

RemusDB

 Remus optimized for protecting database workloads
 Memory optimizations

 Database workloads tend to modify a lot of memory in each epoch
(buffer pool, working memory for queries, etc.)

 Reduce checkpointing overhead
 Asynchronous checkpoint compression
 Disk read tracking
 Memory deprotection

 Network optimization
 Some database workloads are sensitive to the network latency

added by buffering network packets
 Exploit semantics of database transactions to avoid buffering

 Commit protection

13

Send less data

Protect less memory

Async Checkpoint Compression

 Database workloads typically involve a large set of
frequently changing pages of memory (e.g., buffer pool
pages)
 Results in a large amount of replication traffic

 The DBMS often changes only a small part of the pages
 Data that is replicated contains redundancy

 Reduce replication traffic by only sending the changes
to the memory pages (and send them compressed)

14

Async Checkpoint Compression

Protected VM

Xen VMM

Dirty
Pages

(epoch i)

LRU Cache

Dirty pages from
epochs [1 … i-1]

to backup
Compute delta
and compress

Domain 0

15

Disk Read Tracking

DB BP

Active VM Standby VM

DBMS

P Changes to VM StateP
DB
P

BP

DBMS

 DBMS loads pages from disk into its buffer pool (BP)
 Clean to DBMS, dirty to Remus

 Remus synchronizes dirty BP pages in every checkpoint
 Synchronization of clean BP pages is unnecessary

 Can be read from disk at the backup

P

16

Disk Read Tracking

 Track the memory pages into which disk reads are placed

 Do not mark these pages as dirty until they are actually
modified

 Add an annotation to the replication stream indicating
the disk sectors to read to reconstruct these pages

17

Memory Deprotection
 A mechanism that we implemented but did not find

useful!

 Allow the DBMS to declare regions of its memory as
deprotected (i.e., not replicated in checkpoints)
 Hot memory regions such as buffer pool descriptors
 Memory regions that can easily be reconstructed such as

working memory for query processing operators

 After a failure, a recovery handler at the backup
would reconstruct or drop the deprotetced memory
regions
 Memory deprotection is not transparent to the DBMS

18

Memory Deprotection
 Memory deprotection not useful for our workloads

because:
 Disk read tracking (which is transparent) gets us the same

benefit for the buffer pool
 CPU overhead of tracking deprotected pages is high so the

benefit that we get from deprotection is low
 Benefit does not justify the complex non-transparent

interafce

 May be useful for other applications and workloads

19

Network Optimization

 Remus buffers every outgoing network packet
 Ensures clients never see results of unsafe execution
 But increases round trip latency by 2-3 orders of magnitude
 Largest source of overhead for many database workloads
 Unnecessarily conservative for database systems

 Database systems provide transactions with clear
consistency and durability semantics
 Remus’s TCP-level per-checkpoint transactions are redundant

 Provide an interface to allow a DBMS to decide which
packets are protected (i.e., buffered until the next
checkpoint) and which are unprotected
 Implemented as a new setsockopt() option in Linux

20

Commit Protection
 Commit Protection

 DBMS only protects transaction control packets (BEGIN
TRANSACTION, COMMIT, ABORT)

 Other packets are unprotected

 After failover, a recovery handler runs in the DBMS
at the backup
 Aborts all in-flight transaction where the client connection

was in unprotected mode

 Not transparent to the DBMS
 Requires minor modifications to the client connection layer
 103 LoC for PostgreSQL, 85 LoC for MySQL

 Transaction safety is guaranteed

21

Experimental Setup

Backup
Server

DB
MySQL /

PostgreSQL
(Active VM)

Primary
Server

Xen 4.0

Gigabit Ethernet

DB
MySQL /

PostgreSQL
(Standby VM)

Xen 4.0

TPC-C / TPC-H

22

Primary server fails

Failover

23

TPC-C on MySQL

TPC-C on PostgreSQL

Normal Operation

Normal Operation

TPC-H on PostgreSQL

Benefits of RemusDB

26

 High availability for any DBMS with no code changes
 Or with very little code changes if we use commit protection
 “High availability as a service”

 Automatic and fully transparent failover to a warmed
up system

 Next steps
 Reprotection after a failure
 One server as the backup for multiple primary servers
 Administration of RemusDB failover

Outline
 Introduction
 RemusDB: Database high availability using

virtualization
 DBECS: Database high availability (and scalability)

using eventually consistent cloud storage
(Under submission)

 Conclusion

27

 Many cloud storage systems
 Amazon S3
 HBase
 Cassandra
 …and more

 Scalable, distributed, fault tolerant
 Support simple read and write operations

 write(key, value)
 value = read(key)

 Atomicity only for single-row operations
 No atomic multi-row reads or writes
 Interface much simpler than SQL (“NoSQL”)

Cloud Storage

28

Databases Over Cloud Storage

29

 Goal: A scalable, elastic, highly available, multi-
tenant database service that supports SQL and
ACID transactions
 Cloud storage system provides scalability, elasticity, and

availability. DBMS provides SQL and ACID transactions.

Cloud Storage System

Data Center

DBMS

App App

DBMS

App App

DBMS

App App

DBMS

App App

Cloud Storage System

Data Center

DBECS

30

 DBECS: Databases on Eventually Consistent Stores
 Can replace MySQL with another DBMS
 Need Cassandra since we want eventual consistency

InnoDB

Cassandra

MySQL

Cassandra I/O

Why Cassandra?
 Relaxing consistency reduces the write latency of

Cassandra and makes it partition tolerant

 Cassandra stores semi-structured rows that belong to
column families
 Rows are accessed by a key
 Rows are replicated and distributed by hashing keys

 Multi-master replication for each row
 Enables Cassandra to run in multiple data centers
 Also gives us partition tolerance
 DBECS leverages this for disaster tolerance

31

Why Cassandra?
 Client controls the consistency vs. latency trade-off

for each read and write operation
 write(1)/read(1) – fast but not necessarily consistent
 write(ALL)/read(ALL) – consistent but may be slow
 We posit that database systems can control this trade-

off quite well

 Client decides the serialization order of updates
 Important for consistency in DBECS

 Scalable, elastic, highly available
 Like many other cloud storage systems!

32

Consistency vs. Latency
 value = read(1, key, column)

 Send read request to all replicas of the row (based on key)
 Return first response received to client
 Returns quickly but may return stale data

 value = read(ALL, key, column)
 Send read request to all replicas of the row (based on key)
 Wait until all replicas respond and return latest version to

client
 Consistent but as slow as the slowest replica

 write(1) vs. write(ALL)
 Send write request to all replicas
 Client provides a timestamp for each write

 Other consistency levels are supported
33

Consistency vs. Latency

34

Experiment on Amazon EC2 – Yahoo! Cloud
Serving Benchmark (YCSB) – 4 Cassandra Nodes

Same EC2 Availability Zone

Consistency vs. Latency

35

Two EC2 Availability Zones
Same EC2 Geographic Region

Consistency vs. Latency

36

Two EC2 Regions
(US East and US West)

Databases Over Cassandra
 Make Cassandra look like a disk to the DBMS

tenants
 Databases stored in one column (in one column family)
 key = DBMS id + disk block id
 value = contents of disk block

 Cassandra I/O layer maps DBMS reads and writes to
Cassandra reads and writes
 Which consistency level to use?
 write(1)/read(1): Fast but may return stale data and provides

no durability guarantees. Not good for a DBMS.
 write(ALL)/read(1): Returns no stale data and guarantees

durability but writes are slow.

37

Goal of DBECS
 Achieve the performance of write(1)/read(1) while

maintaining consistency, durability, and
availability

 Optimistic I/O
 Use write(1)/read(1) and detect stale data

 Client-controlled synchronization
 Make database updates safe in the face of failures

38

Optimistic I/O
 Key observation: with write(1)/read(1), most reads

will not return stale data
 Single writer for each database block
 Reads unlikely to come soon after writes because of DBMS

buffer pool
 Cassandra sends writes to all replicas
 Network topology means that first replica to acknowledge a

write will likely be the first to acknowledge a read

 So use write(1)/read(1), detect stale data, and
recover from it

39

Optimistic I/O
 Detecting stale data

 Cassandra I/O stores a version number with each database
block and remembers the current version of each block

 Checks the version number returned by read(1) against the
current version number

 Recovering from stale data
 Use read(ALL)
 Retry the read(1)

 When read(1) detects stale data, Cassandra brings the
stale replicas up to date (read repair)

 We only store version information about recently
accessed database blocks
 For the rest, use read(ALL)

40

Dealing with Failures
 With write(1), data is not safe
 With read(ALL), will block if one replica is down
 Naive solution: use write(ALL)/read(QUORUM)
 Key observation: Transaction semantics tell us

when writes must be safe and when the DBMS
can tolerate unsafe writes
 Write Ahead Logging tells us when data needs to be safe

(write log before data and flush log on commit)
 Database systems explicitly synchronize data at the

necessary points, for example, by using fsync()
 Need an fsync() for Cassandra
 Can abort transactions if unsafe writes are lost

41

Client-Controlled Sync
 Added new type of write in Cassandra: write(CSYNC)

 Like write(1), but stores the key of the written row in a
sync_pending list

 Cassandra client can issue a CSync() call to synchronize all
rows in the sync_pending list

 To protect against failure, Cassandra I/O
 Uses write(CSYNC) instead of write(1)
 Calls CSync() whenever the DBMS calls fsync()

 Data or log pages are made safe only when needed
 Time between write() and CSync() enables latency hiding

 Uses read(QUORUM)

42

Examples of Failures
 Loss of a Cassandra node

 Handled by Cassandra
 Completely transparent to DBMS

 Loss of the primary data center (Disaster Recovery)
 Cassandra needs to be running in multiple data centers
 Restart the DBMS in a backup data center
 Log-based recovery brings the database up to date in a

transactionally consistent way

43

Throughput

44

MySQL and Cassandra in Amazon EC2
TPC-C Workload – 6 Cassandra Nodes

Scalability

45

Adding DBMS Tenants and Proportionally
Increasing the Number of Cassandra Nodes

High Availability

46

Failure of Cassandra Node in Primary Data Center

High Availability

47

Failure of Cassandra Node in Secondary DC

Disaster Recovery

48

Loss of Primary Data Center

Benefits of DBECS
 Scalable and elastic storage capacity and bandwidth
 Scalable in the number of database tenants
 Highly available and disaster tolerant storage tier
 SQL and ACID transactions for the tenants
 An interesting point in the spectrum of answers

to the question: “Can consistency scale?”

 Missing from DBECS (next steps)
 Always-up hosted DBMS tenants

 DBECS enables DBMS tenant to use standard log-based
recovery, but tenant incurs significant down time

 Scaling of individual hosted DBMS tenants

49

Conclusion
 High availability (and scalability) for database

systems can be provided by the cloud infrastructure

 Taking advantage of the well-known characteristics of
database systems can greatly enhance the solutions

 RemusDB: Efficient and transparent database high
availability in the virtualization layer

 DBECS: Scalability and high availability for database
clients built on the Cassandra cloud storage system

50

