The Art of Building High End Electronic Trading Systems

(A case study, why certain problems don´t go away)

Hors Schaefer

Deutsche Boerse Systems AG

Frankfurt, Germany

horst.schaefer@deutsche-boerse.com

April 6th, 2001

Introduction

An electronic trading system provided by an exchange can be described as a high performance transaction system usually acting on a client-server architecture. Besides the well-known requirements implied by a high performance transaction system (such as high throughput, short response times, availablity and reliability), several specific demands, constraints and issues exist for an electronic trading system. This paper explains the most important specifialities and lists the resulting issues which are still not solved satisfactorily.

The following demands will be illustrated in more detail:

· Hot Spots: How can high volumes of single order throughput be achieved?

· Fairness: How can it be guaranteed that all participants get the same information at the same time?

· Broadcast / Push: Which means can be used to enable broadcast and push mechanisms which meet the fairness requirement

· Interfaces and integration into Multi-Vendor and customer environment: How have interfaces be designed to be flexible and cost efficient to real time changes? Which SW architectures are suitable for flexible integration, guaranteed smooth STP and do not violate back end operations?

· Peak loads: How can high performance levels be guaranteed for peak loads?

· Globalisation / Remote Access: How can remote members be connected in an easy and fast way providing the same service quality as for other members?

· Handling of complexity in the functionality of the trading services: How can the amount of specific cases be handled flexibly without high interference to existing implementation?
Hot Spots

The challenge here is the increase in single order throughput. In order to improve the performance of transaction handling DB and transaction monitor systems usually use parallelism. However, the applicability of parallelism to increase single order throughput is limited, especially the mechanism of group commit is inappropriate, because the concerned transactions (i.e. a single buy or sell order) act on one instrument. Furthermore, sequential order processing per instrument is forced due to the time/price priority rule for the matching algorithm.

Issues:

· If parallelism is not or only in a limited way applicable, how can single order throughput be increased?

· What other means and mechanisms are available and suitable?

Fairness, Broadcast and Push Mechanisms

An important quality aspect in the electronic trading system is guaranteed fairness. Fairness means, that all connected participants will get the same information at the same time regardless where they are located. In general, fairness implies that all participants are treated in the same way with the same level of service. Therefore, the resulting principle says, that the customer with the weakest level of service determines the provided service level for all customers.

Technically, it is based on the notion of “systematic disadvantage”, i.e. the difference in the average network turnaround times between locations. In order to guaranteed fairness in using our system, we do not tolerate more than 0.25 seconds turnaround time (where turnaround comprises broadcast and one-way transaction travel time) between the best and worst location.

Issues:

· How can information be distributed to all or a defined set of participants guaranteeing same provision time and correctness of data?

· Network: Which broadcast / push protocols meeting the fairness requirements are applicable?

· Application Architecture: How has the software for the the display and forwarding of the data be designed and structured in order to meet the fairness requirement

Interfaces and Integration Issues

The trading system is accessed by the clients through an interface (currently an API, publicly available for 3rd party software providers). This interface provides the trading functions to the clients as well as represents the boundary for the integration into the varying client environments.

Issues:

· How should interfaces be designed enabling flexible changes (concerning the trading system functionality) and having little interference to existing applications at the client site and to the trading system with respect to adaptation. Moreover, the interface has to be able to be accessed and used by several, different applications at the client site.

· Which concepts can be applied to guarantee backward compatibility?

· What suitable SW architectures (for an interface as well as for applications acting on this interface) do exit meeting flexible, fast and cost efficient integration into Multi-Vendor and customer environments and enabling straight through processing in the given environment?

· How can it be ensured, that 3rd party applications use the provided interface in a correct and compliant way?

· How can it be proved and guaranteed that the interaction of applications from different vendors with the applications provided by the exchange system (all running at the client site) perform STP correctly?

Peak Loads

During trading there are peak loads where for a period of time the amount of orders per second entered into the trading systems increase tremendously. These time periods are driven by the financial market, have different duration and are not predictable. Moreover, these peak loads are highly volatile. It is demanded that the offered service level are not violated by such peak loads. This means, that the performance provided for the normal, average load situation has to be provided also for peak loads, i.e. no reduction of throughput and response time is tolerable.

Issues

· This may request the provision of spare resources (HW, network and SW architecture / processes) focussed on the support of peak loads, which implies high costs for both, the exchange and the customers.

· What concepts, mechanisms, means do exist in order to guarantee same service levels in peak situations taking into account the cost / quality trade off.

Globalization and Remote Access

Access to the trading system is possible from everywhere worldwide. Clients are provided with HW and appropriate SW to connect over a network to the trading system backend.

Issues:

In order to enable worldwide access we have to deal with divers network providers which offer different network technologies with varying functionality, quality of service and more important pricing strategies. In order to maintain fairness, the main objective is to provide a homogenous network service to all clients worldwide.

· How has the software be designed in order to enable easy and cost efficient connection of new customers guaranteeing the same level of service?

· Which means and processes are suitable for an easy and flexible enhancement of the network worldwide?

Complex and Extensive Trading Functionality

An exchange trading system provides complex and extensive functionality due to the support for e.g. different market types (cash, derivatives market), order types with different attributes (e.g. limit / market order, execution restrictions) and market models with different trading phases and auctions. Although the software for the core functionality is quite complex, this complexity is even increased due to the many special cases in the trading and matching functionality. There exists no “standard market model” and therefore no standard components can be bought.

Issues:

· What mechanisms / processes can be used to deal with the given complexity?

· How can software be designed, which design principle / development methods can be used in order to make the software flexible for enhancement and to reduce test effort.

· Required is one overall architecture which is able to serve different markets with different characteristics.

06.04.01
1

