Experiences in Applying a Coordination Protocol

for Inter-organizational Transactions (Cohesions)

Abstract of a paper for submission to the

2001 High Performance Transaction Systems Workshop

Submitted on 9 April 2001 by:

Peter R. Furniss, Ph.D, Technical Director, Choreology Ltd. peter.furniss@choreology.com
Alastair J. Green, Managing Director, Choreology Ltd. alastair.green@choreology.com
Choreology Ltd

13 Austin Friars

London EC2N 2JX

United Kingdom

Telephone +44 207-670 1679

Facsimile +44 207-670 1785

Biographical Notes

Peter Furniss is the Maintenance Rapporteur for OSI/TP, and has edited ISO and ODP specifications, including the CCR protocol (ISO/IEC 9805). He chairs the specification sub-committee of the OASIS Business Transactions Technical Committee. Before participating in the founding of Choreology Ltd, he was an Architect in HP’s Arjuna Labs, responsible for enhancements to crash recovery in the Arjuna Java implementation of the OMG Transaction Service.

Alastair Green has worked on the deployment and development of distributed transactional software for over fifteen years, starting with Digital’s ACMS TP monitor. He has architected transactional frameworks for several banks in the City of London and on Wall St, as well as for a major financial data provider. Having established Transarc Corp.’s UK office, he went on to play a key role in the commercialization of the work of the Arjuna Group at Newcastle University. Until earlier this year he was Principal Architect of HP’s Arjuna Labs. He is an active member of the OASIS BT Technical Committee.

The authors are currently involved, alongside colleagues, in the production and marketing of a commercial Cohesion Service. This abstract reflects that work.

1. Introduction

There is an increasing interest in codifying the coordination protocol required to assist in composing multi-party (inter-organizational) transactions or cohesions. Organizations, or departments of large organizations, wish to present web services to their clients. Clients wish to orchestrate the outcome of related operations upon these services in a reliable but flexible fashion.

Existing distributed transaction managers have generally been designed for use within organizations. Conventionally they work with resources which have inflexible and narrow concurrency control and persistence implementations. The design goal of such transaction services and resources has been to combine to provide ACID properties to applications. The deployment of such software has typically been carried out within a single consistency domain: in other words, the contents of the data transformed or observed by transactions has been known to the designer of an application, and the designer is responsible for their overall consistency after the complete of his transactions.

Cohesions operate across a fractured consistency domain. Web services are designed to be composed by clients into multi-party transactions. In this environment a service provider is allowing clients (possibly from an unknown counterparty who has discovered the service through a directory) to dictate changes to transactional data. In the absence of an overarching application owner it is inappropriate to design services that share data extensively, and which therefore require high levels of transaction isolation. Services that form part of a cohesion must also exercise a greater level of control over their participation than is customary, for example by the use of time-outs or “time-ins”.

Initiators or composers of cohesions must be able to control the participation of services in a very flexible and dynamic fashion. Conventional atomic transaction outcome determination, even when coupled with nesting, does not give sufficient freedom or ease of control to the composing application. It is necessary to provide the composer with the ability to observe (and act upon) voting in progress. The composer must be able to remove participants on the fly, without perturbing the overall progress of the cohesion, and without necessarily knowing in advance which participants are liable to be removed.

The protocol that is used to achieve these goals is a super-set of the conventional two-phase commit protocol (thereby allowing conventional transaction services and resource managers to be bound into cohesions, should the need arise). The message set for the protocol is defined by an XML schema, allowing for maximal interoperation, in the vogue of the day.

2. Summary of the protocol

The actions (steps) of a single party in an electronic transaction constitute a choreography. When choreographies (or nested sub-choreographies) are composed in a coordinated way by one party to a multi-party transaction, the resulting collection is termed a cohesion. We describe a protocol for establishing and terminating membership in, and controlling the final outcome of, such cohesions.

A cohesion differs from a classical atomic transaction in two respects: the outcome of its participants may be disparate (rather than unanimous), and the participants are not contractually obliged to apply any level of persistence or concurrency control to their operations. Participants are, however, obliged to provide an addressable means of backward recovery (whose meaning and actual effect is known only to them). Such compensations seek to “make good” the effects of the participant, but cannot promise to precisely invert them. In both respects, therefore, cohesions deliberately violate atomicity. The concomitant loss of precision is outweighed in the mind of users by the ability to do business over the web.

Atomic operation groups

An atomic group is a group of operations which has one to many forward operations, a single reversal operation, and fails or succeeds as a unit. Each atomic group is established dynamically: a cohesion initiator or existing participant attaches a group identifier to service operation invocations. Atomic group providers may allow statically defined groups to be offered for enlistment in a transaction, causing the allocation of a common identifier to operation invocations for that group.

Structure and states of a cohesion

A cohesion is a tree, where cohesions are linked to parents up to the root. Internally each cohesion is structured as a tree of atomic groups. Cohesions and atomic groups are both referred to as participants. During the lifetime of a cohesion any child participant in the tree may deliver a readiness message to its parent (ready or not).

Cohesions tolerate contradictory votes, i.e. they can receive ready messages and not ready messages from their children, and then proceed to decide which of their ready children will complete, and which will be cancelled. The algorithm for deciding the outcome of a contradictory vote is provided by the cohesion initiator or composer), i.e. by the application. Another way of stating this is that cohesions can have multiple successful outcomes (unlike atomic actions, which can only have one). Unlike conventional nested transactions (which provide another way of specifying multiple good outcomes), this approach does not require static declaration of reversible operation groups, but allows the application to view votes at any time, right up to termination, before deciding which outcome to dictate to each participant.

Atomic groups can only vote ready if all of their children vote ready. The algorithm for deciding their outcome is therefore intrinsic in the protocol.

Cohesions begin, modulate participation, poll, await outcomes, and deliver outcomes. These states are analogous to conventional atomic transaction states but there are two key differences.

The modulation of participation occurs at the behest of application elements. Participants can be enlisted or delisted by the composer or by one of its participants. During participant modulation a participant can deliver an unsolicited vote to its parent (perhaps because a timer expired). An unsolicited “not ready” is tantamount to self-delistment (withdrawal). Its consequences depend on the nature of the parent (atomic abortion, cohesive education). Parents can also deliver unsolicited outcomes (cancel, confirm) to participants. This phase can be viewed as “refining the electorate”.

The poll phase occurs when the initiator decides to determine the final outcome of the cohesion. Each participant all the way down the tree is polled, and at the root cohesion level the results are delivered to the initiator. The initiator now has a stable population of readied atomic groups, and another population of unreadied atomic groups. From the readied groups it can select those which will be confirmed, and those which will be cancelled.

A concrete example that illustrates these behaviours involves the offer of financial instruments for sale. A prospective buyer may wish to buy a quantity of a stock, and at the same time an option to sell at a lower price, which will limit his downside over some period of time. The stock is available from multiple brokers, and the derivative is available from multiple exchanges or banks. Each of these institutions time limits its offers. In a period of less than a minute, the cohesion initiator must get binding quotes (readied atomic groups) for the two “legs” of the desired trade, and decide (on the basis of price and other factors) which two to confirm. These two must complete atomically. The rest must fail.

The coordination protocol and allied matters

The two-phase commit protocol with presumed abort semantics is used to implement the poll. Participant registration (enlistment, delistment), unsolicited voting/outcome delivery, and query messages augment this core. We are currently examining issues such as “repeated preparation”and “unpreparation”, in the light of a review of advanced transaction models.

The composer-cohesion interface, and the participant-service interface may be defined as language-specific APIs or as XML schemata. This is an area of current work.

A mechanism for enhancing application messages with participant identifiers allows the cohesion tree to be built by application traffic, somewhat in the manner of OTS implicit context propagation.

3. Work in progress

The paper will describe our experiences in developing and proving this new underpinning for loosely-coupled coordinated outcomes in a web services environment.

This work, which is current, takes three forms: first, the development in Java of a Cohesion Service product for our company; second our involvement as active members of the OASIS Business Transactions Technical Committee (which is aiming to achieve standardization of an XML-based protocol for Business Transactions before the end of 2001), and third, our anticipated deployment of a Cohesion Service implementation in a commercial setting during this period.

Two examples of the practical application of our Cohesion Service will be described at a high-level: real-time interorganizational trade execution (involving underlying and derivative financial instruments), and the consistent provisioning of network elements (switches).

By the date of the HPTS Workshop we expect to be able to demonstrate a working instance of at least one of these examples.

