
Present Tense
Challenges and Trade-offs in Building a
Web-scale Real-time Analytics System

Benjamin Black, b@fastip.com
 @b6n

Problem
Collect, index, and query trillions of high-
dimensionality records with seconds of
latency for ingestion and response.

A (Partial) Record
Src MAC

Dst MAC

Src IPv4 Addr

Dst IPv4 Addr

Protocol

Src Transport Port

Dst Transport Port

Src IPv4 Lat

Src IPv4 Long

Dst IPv4 Lat

Dst IPv4 Long

Start usecs

End usecs

Packets

Octets

UID

Dimensions Metrics

Why Is This Hard?
‣ All our data is multi-dimensional -- and

we retain that dimensionality
throughout.

‣ 2-D systems (1 dimension + time) are
simpler, but there is significant
information loss with the dimensionality
loss.

‣ Aggregation is loss of dimensionality.

First Attempt
‣ MAXIMIZE SIMPLICITY.
‣ Insert records into HBase.
‣ Retrieve all records in time range, then

filter, aggregate, sort.

‣ Similar to OpenTSDB approach.

retrieve

filter

aggregate

sort

Apply Load

PREPARE YOUR DATA

First Failure
‣ All resources consumed, database

corrupted, hate gizzards swollen.

‣ Architecture scales poorly to queries
touching billions of records -- linear on
number of records.

‣ HBase in late 2009 extremely fragile,
especially on low-end hardware.

Second Attempt
‣ Insert records into Cassandra.
‣ Random partitioner and indexing to

evenly distribute load.
‣ Index every dimension independently.
‣ Multi-step retrieval & set operation

process to determine all records of
interest.

‣ Finally, aggregate and sort.

retrieve

filter & intersect

aggregate

sort

retrieveretrieveretrieve

retrieve

filter

Apply Load

PREPARE YOUR DATA

Second Failure
‣ Write load enormous, query latency

agonizing, hate gizzards swollen.

‣ Repeated, multi-million key fetches per
query makes things slow.

‣ Treating the application as independent
of the database just won’t scale.

Third Attempt
‣ Almost identical to previous...
‣ BIG CHANGE: Perform statistical

sampling of records in the database.

Apply Load

PREPARE YOUR DATA

Third Failure
‣ Write load enormous, query latency

only marginally better, results
unreliable, hate gizzards swollen.

‣ Sampling is unstable without
sophisticated algorithms.

‣ Both too slow and surprising. In a bad
way.

Pause. Regroup.
Our mental model is obviously broken.
What is a better one?

Hit the library: Citeseer.

Epiphany
We have an OLAP problem!

Not just any OLAP problem, but a real-
time, high-dimensionality OLAP problem.

Not impossible, just really hard.

What is OLAP?
A business intelligence (BI) approach to
“swiftly answer multi-dimensional
analytics queries” by structuring the data
specifically eliminate expensive
processing at query time, even at a cost
of enormous storage consumption.

The Cube
OLAP systems rely on pre-computing
results, then filtering, sorting, and
aggregating to produce results. The
artifact of the pre-computation is a
hypercube with size proportional to the
dimensionality and cardinality of the data.

Dimensionality
We have dozens of dimensions;
Materializing the entire cube would
require absurd memory -- out of the
question.

Cardinality
The number of unique values possible for
each dimension. We have a lot of these,
too -- thousands to billions.

Materializing the entire cube would
require absurd memory -- out of the
question.

Strategery
Starting points:

High-Dimensional OLAP: A Minimal
Cubing Approach by Li, Han, and
Gonzalez
Sorting improves word-aligned bitmap
indexes by Lemire, Kaser, and Aouiche

Research
Academic research can point you in a
direction, but it is rarely a complete
solution. Even more rarely is it a
complete solution for your problem.

A useful, even essential, tool, but one to
be used with great care.

Fourth Attempt
‣ Insert records into Cassandra.
‣ Materialize lower-dimensional cuboids

using bitsets, join as needed. This is a
lot harder than it sounds.

‣ Perform all query steps directly in the
database. So is this.

aggregate

sort

filter

retrieve &
intersect

Apply Load

PREPARE YOUR DATA

SUBMIT

Success!
‣ Low write load.
‣ Low latency -- compact indices mean

more of them in memory.
‣ Distributed cuboids mean distributed

load.
‣ Hate gizzards shrink.

More To Do
‣ Data-specific indices -- network prefix

queries, etc.
‣ On-disk structures specific to our

application.
‣ MORE MAGIC.

Lessons
‣ READ THE LITERATURE!
‣ Generic software is 90% wrong at

scale, you just don’t know which 90%.
ITERATE TO DISCOVER.

‣ BE PREPARED TO START OVER.
Repeatedly.

‣ DON’T GIVE UP!

We’re Hiring

https://fastip.com/jobs

