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Problem
Collect, index, and query trillions of high-
dimensionality records with seconds of 
latency for ingestion and response.
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Why Is This Hard?
‣ All our data is multi-dimensional -- and 

we retain that dimensionality 
throughout.

‣ 2-D systems (1 dimension + time) are 
simpler, but there is significant 
information loss with the dimensionality 
loss.

‣ Aggregation is loss of dimensionality.



First Attempt
‣ MAXIMIZE SIMPLICITY.
‣ Insert records into HBase.
‣ Retrieve all records in time range, then 

filter, aggregate, sort.

‣ Similar to OpenTSDB approach.
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Apply Load

PREPARE YOUR DATA



First Failure
‣ All resources consumed, database 

corrupted, hate gizzards swollen. 

‣ Architecture scales poorly to queries 
touching billions of records -- linear on 
number of records.

‣ HBase in late 2009 extremely fragile, 
especially on low-end hardware.



Second Attempt
‣ Insert records into Cassandra.
‣ Random partitioner and indexing to 

evenly distribute load.
‣ Index every dimension independently.
‣ Multi-step retrieval & set operation 

process to determine all records of 
interest.

‣ Finally, aggregate and sort.
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Apply Load

PREPARE YOUR DATA



Second Failure
‣ Write load enormous, query latency 

agonizing, hate gizzards swollen. 

‣ Repeated, multi-million key fetches per 
query makes things slow.

‣ Treating the application as independent 
of the database just won’t scale.



Third Attempt
‣ Almost identical to previous...
‣ BIG CHANGE: Perform statistical 

sampling of records in the database.
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Third Failure
‣ Write load enormous, query latency 

only marginally better, results 
unreliable, hate gizzards swollen. 

‣ Sampling is unstable without 
sophisticated algorithms.

‣ Both too slow and surprising.  In a bad 
way.



Pause.  Regroup.
Our mental model is obviously broken.  
What is a better one?

Hit the library: Citeseer.



Epiphany
We have an OLAP problem!

Not just any OLAP problem, but a real-
time, high-dimensionality OLAP problem.

Not impossible, just really hard.



What is OLAP?
A business intelligence (BI) approach to 
“swiftly answer multi-dimensional 
analytics queries” by structuring the data 
specifically eliminate expensive 
processing at query time, even at a cost 
of enormous storage consumption.



The Cube
OLAP systems rely on pre-computing 
results, then filtering, sorting, and 
aggregating to produce results.  The 
artifact of the pre-computation is a 
hypercube with size proportional to the 
dimensionality and cardinality of the data.



Dimensionality
We have dozens of dimensions; 
Materializing the entire cube would 
require absurd memory -- out of the 
question.



Cardinality
The number of unique values possible for 
each dimension.  We have a lot of these, 
too -- thousands to billions.

Materializing the entire cube would 
require absurd memory -- out of the 
question.



Strategery
Starting points:

High-Dimensional OLAP: A Minimal 
Cubing Approach by Li, Han, and 
Gonzalez
Sorting improves word-aligned bitmap 
indexes by Lemire, Kaser, and Aouiche



Research
Academic research can point you in a 
direction, but it is rarely a complete 
solution.  Even more rarely is it a 
complete solution for your problem.

A useful, even essential, tool, but one to 
be used with great care.



Fourth Attempt
‣ Insert records into Cassandra.
‣ Materialize lower-dimensional cuboids 

using bitsets, join as needed.  This is a 
lot harder than it sounds.

‣ Perform all query steps directly in the 
database.  So is this.
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Success!
‣ Low write load.
‣ Low latency -- compact indices mean 

more of them in memory.
‣ Distributed cuboids mean distributed 

load.
‣ Hate gizzards shrink.



More To Do
‣ Data-specific indices -- network prefix 

queries, etc.
‣ On-disk structures specific to our 

application.
‣ MORE MAGIC.



Lessons
‣ READ THE LITERATURE!
‣ Generic software is 90% wrong at 

scale, you just don’t know which 90%.  
ITERATE TO DISCOVER.

‣ BE PREPARED TO START OVER.  
Repeatedly.

‣ DON’T GIVE UP!



We’re Hiring

https://fastip.com/jobs


