On Designing and Deploying
Internet-Scale Services

James Hamilton — Windows Live Services Platform

ABSTRACT

The system-to-administrator ratio is commonly used as a rough metric to understand adminis-
trative costs in high-scale services. With smaller, less automated services this ratio can be as low as
2:1, whereas on industry leading, highly automated services, we’ve seen ratios as high as 2,500:1.
Within Microsoft services, Autopilot [1] is often cited as the magic behind the success of the Win-
dows Live Search team in achieving high system-to-administrator ratios. While auto-administration
is important, the most important factor is actually the service itself. Is the service efficient to auto-
mate? Is it what we refer to more generally as operations-friendly? Services that are operations-
friendly require little human intervention, and both detect and recover from all but the most obscure
failures without administrative intervention. This paper summarizes the best practices accumulated
over many years in scaling some of the largest services at MSN and Windows Live.

Introduction

This paper summarizes a set of best practices for
designing and developing operations-friendly services.
Designing and deploying high-scale services is a rapidly
evolving subject area and, consequently, any list of best
practices will likely grow and morph over time. Our aim
is to help others

1. deliver operations-friendly services quickly and

2. avoid the early morning phone calls and meet-
ings with unhappy customers that non-opera-
tions-friendly services tend to yield.

The work draws on our experiences over the last
20 years in high-scale data-centric software systems
and internet-scale services, most recently from leading
the Exchange Hosted Services team (at the time, a mid-
sized service of roughly 700 servers and just over 2.2M
users). We also incorporate the experiences of the Win-
dows Live Search, Windows Live Mail, Exchange
Hosted Services, Live Communications Server, Win-
dows Live Address Book Clearing House (ABCH),
MSN Spaces, Xbox Live, Rackable Systems Engineer-
ing Team, and the Messenger Operations teams in ad-
dition to that of the overall Microsoft Global Founda-
tion Services Operations team. Several of these con-
tributing services have grown to more than a quarter
billion users. The paper also draws heavily on the work
done at Berkeley on Recovery Oriented Computing [2,
3] and at Stanford on Crash-Only Software [4, 5].

Bill Hoffman [6] contributed many best practices
to this paper, but also a set of three simple tenets
worth considering up front:

1. Expect failures. A component may crash or be
stopped at any time. Dependent components
might fail or be stopped at any time. There will
be network failures. Disks will run out of space.
Handle all failures gracefully.

2. Keep things simple. Complexity breeds prob-
lems. Simple things are easier to get right.

Avoid unnecessary dependencies. Installation
should be simple. Failures on one server should
have no impact on the rest of the data center.

3. Automate everything. People make mistakes.
People need sleep. People forget things. Auto-
mated processes are testable, fixable, and there-
fore ultimately much more reliable. Automate
wherever possible.

These three tenets form a common thread through-
out much of the discussion that follows.

Recommendations

This section is organized into ten sub-sections,
each covering a different aspect of what is required to
design and deploy an operations-friendly service. These
sub-sections include overall service design; designing
for automation and provisioning; dependency manage-
ment; release cycle and testing; hardware selection and
standardization; operations and capacity planning; au-
diting, monitoring and alerting; graceful degradation
and admission control; customer and press communica-
tions plan; and customer self provisioning and self help.

Overall Application Design

We have long believed that 80% of operations is-
sues originate in design and development, so this sec-
tion on overall service design is the largest and most
important. When systems fail, there is a natural ten-
dency to look first to operations since that is where the
problem actually took place. Most operations issues,
however, either have their genesis in design and devel-
opment or are best solved there.

Throughout the sections that follow, a consensus
emerges that firm separation of development, test, and
operations isn’t the most effective approach in the ser-
vices world. The trend we’ve seen when looking
across many services is that low-cost administration
correlates highly with how closely the development,
test, and operations teams work together.

21st Large Installation System Administration Conference (LISA ’07) 233

On Designing and Deploying Internet-Scale Services

In addition to the best practices on service design
discussed here, the subsequent section, “Designing for
Automation Management and Provisioning,” also has
substantial influence on service design. Effective auto-
matic management and provisioning are generally
achieved only with a constrained service model. This
is a repeating theme throughout: simplicity is the key
to efficient operations. Rational constraints on hard-
ware selection, service design, and deployment mod-
els are a big driver of reduced administrative costs and
greater service reliability.

Some of the operations-friendly basics that have
the biggest impact on overall service design are:

e Design for failure. This is a core concept when
developing large services that comprise many
cooperating components. Those components will
fail and they will fail frequently. The compo-
nents don’t always cooperate and fail indepen-
dently either. Once the service has scaled beyond
10,000 servers and 50,000 disks, failures will oc-
cur multiple times a day. If a hardware failure re-
quires any immediate administrative action, the
service simply won’t scale cost-effectively and
reliably. The entire service must be capable of
surviving failure without human administrative
interaction. Failure recovery must be a very sim-
ple path and that path must be tested frequently.
Armando Fox of Stanford [4, 5] has argued that
the best way to test the failure path is never to
shut the service down normally. Just hard-fail it.
This sounds counter-intuitive, but if the failure
paths aren’t frequently used, they won’t work
when needed [7].

Redundancy and fault recovery. The mainframe
model was to buy one very large, very expensive
server. Mainframes have redundant power sup-
plies, hot-swappable CPUs, and exotic bus ar-
chitectures that provide respectable I/O through-
put in a single, tightly-coupled system. The ob-
vious problem with these systems is their ex-
pense. And, even with all the costly engineering,
they still aren’t sufficiently reliable. In order to
get the fifth 9 of reliability, redundancy is re-
quired. Even getting four 9°s on a single-system
deployment is difficult. This concept is fairly
well understood industry-wide, yet it’s still com-
mon to see services built upon fragile, non-re-
dundant data tiers.

Designing a service such that any system can
crash (or be brought down for service) at any
time while still meeting the service level agree-
ment (SLA) requires careful engineering. The
acid test for full compliance with this design
principle is the following: is the operations
team willing and able to bring down any server
in the service at any time without draining the
work load first? If they are, then there is syn-
chronous redundancy (no data loss), failure

Hamilton

detection, and automatic take-over. As a design
approach, we recommend one commonly used
to find and correct potential service security is-
sues: security threat modeling. In security threat
modeling, we consider each possible security
threat and, for each, implement adequate mitiga-
tion. The same approach can be applied to de-
signing for fault resiliency and recovery.
Document all conceivable component failures
modes and combinations thereof. For each fail-
ure, ensure that the service can continue to op-
erate without unacceptable loss in service quali-
ty, or determine that this failure risk is accept-
able for this particular service (e.g., loss of an
entire data center in a non-geo-redundant ser-
vice). Very unusual combinations of failures
may be determined sufficiently unlikely that
ensuring the system can operate through them
is uneconomical. Be cautious when making this
judgment. We’ve been surprised at how fre-
quently “unusual” combinations of events take
place when running thousands of servers that
produce millions of opportunities for compo-
nent failures each day. Rare combinations can
become commonplace.

Commodity hardware slice. All components of

the service should target a commodity hardware

slice. For example, storage-light servers will be
dual socket, 2- to 4-core systems in the $1,000
to $2,500 range with a boot disk. Storage-heavy
servers are similar servers with 16 to 24 disks.

The key observations are

1. large clusters of commodity servers are
much less expensive than the small num-
ber of large servers they replace,

2. server performance continues to increase
much faster than 1/0 performance, making
a small server a more balanced system for
a given amount of disk,

3. power consumption scales linearly with
servers but cubically with clock frequency,
making higher performance servers more
expensive to operate, and

4. a small server affects a smaller proportion
of the overall service workload when fail-
ing over.

Single-version software. Two factors that make

some services less expensive to develop and

faster to evolve than most packaged products are
o the software needs to only target a single
internal deployment and
o previous versions don’t have to be support-
ed for a decade as is the case for enter-
prise-targeted products.

Single-version software is relatively easy to

achieve with a consumer service, especially one

provided without charge. But it’s equally impor-
tant when selling subscription-based services to

234 21st Large Installation System Administration Conference (LISA *07)

Hamilton

non-consumers. Enterprises are used to having
significant influence over their software providers
and to having complete control over when they
deploy new versions (typically slowly). This
drives up the cost of their operations and the
cost of supporting them since so many versions
of the software need to be supported.
The most economic services don’t give cus-
tomers control over the version they run, and
only host one version. Holding this single-ver-
sion software line requires
1. care in not producing substantial user ex-
perience changes release-to-release and
2. a willingness to allow customers that need
this level of control to either host internally
or switch to an application service provider
willing to provide this people-intensive
multi-version support.
Multi-tenancy. Multi-tenancy is the hosting of
all companies or end users of a service in the
same service without physical isolation, where-
as single tenancy is the segregation of groups of
users in an isolated cluster. The argument for
multi-tenancy is nearly identical to the argu-
ment for single version support and is based up-
on providing fundamentally lower cost of ser-
vice built upon automation and large-scale.

In review, the basic design tenets and considera-

tions we have laid out above are:

design for failure,

implement redundancy and fault recovery,
depend upon a commodity hardware slice,
support single-version software, and
implement multi-tenancy.

We are constraining the service design and operations
model to maximize our ability to automate and to re-
duce the overall costs of the service. We draw a clear
distinction between these goals and those of applica-

tion

service providers or IT outsourcers. Those busi-

nesses tend to be more people intensive and more will-
ing to run complex, customer specific configurations.

More specific best practices for designing opera-

tions-friendly services are:

Quick service health check. This is the services
version of a build verification test. It’s a sniff
test that can be run quickly on a developer’s
system to ensure that the service isn’t broken in
any substantive way. Not all edge cases are test-
ed, but if the quick health check passes, the
code can be checked in.

Develop in the full environment. Developers
should be unit testing their components, but
should also be testing the full service with their
component changes. Achieving this goal effi-
ciently requires single-server deployment (sec-
tion 2.4), and the preceding best practice, a
quick service health check.

Zero trust of underlying components. Assume
that underlying components will fail and ensure

On Designing and Deploying Internet-Scale Services

that components will be able to recover and con-
tinue to provide service. The recovery technique
is service-specific, but common techniques are to
o continue to operate on cached data in read-
only mode or
o continue to provide service to all but a tiny
fraction of the user base during the short
time while the service is accessing the re-
dundant copy of the failed component.
Do not build the same functionality in multiple
components. Foreseeing future interactions is
hard, and fixes have to be made in multiple
parts of the system if code redundancy creeps
in. Services grow and evolve quickly. Without
care, the code base can deteriorate rapidly.
One pod or cluster should not affect another pod
or cluster. Most services are formed of pods or
sub-clusters of systems that work together to pro-
vide the service, where each pod is able to oper-
ate relatively independently. Each pod should be
as close to 100% independent and without inter-
pod correlated failures. Global services even with
redundancy are a central point of failure. Some-
times they cannot be avoided but try to have ev-
erything that a cluster needs inside the clusters.
Allow (rare) emergency human intervention. The
common scenario for this is the movement of us-
er data due to a catastrophic event or other emer-
gency. Design the system to never need human
interaction, but understand that rare events will
occur where combined failures or unanticipated
failures require human interaction. These events
will happen and operator error under these cir-
cumstances is a common source of catastrophic
data loss. An operations engineer working under
pressure at 2 a.m. will make mistakes. Design
the system to first not require operations inter-
vention under most circumstances, but work
with operations to come up with recovery plans
if they need to intervene. Rather than docu-
menting these as multi-step, error-prone proce-
dures, write them as scripts and test them in
production to ensure they work. What isn’t test-
ed in production won’t work, so periodically
the operations team should conduct a “fire
drill” using these tools. If the service-availabil-
ity risk of a drill is excessively high, then insuf-
ficient investment has been made in the design,
development, and testing of the tools.
Keep things simple and robust. Complicated al-
gorithms and component interactions multiply
the difficulty of debugging, deploying, etc. Sim-
ple and nearly stupid is almost always better in a
high-scale service-the number of interacting fail-
ure modes is already daunting before complex
optimizations are delivered. Our general rule is
that optimizations that bring an order of magni-
tude improvement are worth considering, but

21st Large Installation System Administration Conference (LISA °07) 235

On Designing and Deploying Internet-Scale Services

236

percentage or even small factor gains aren’t
worth it.

Enforce admission control at all levels. Any
good system is designed with admission control
at the front door. This follows the long-under-
stood principle that it’s better to not let more
work into an overloaded system than to contin-
ue accepting work and beginning to thrash.
Some form of throttling or admission control is
common at the entry to the service, but there
should also be admission control at all major
components boundaries. Work load characteris-
tic changes will eventually lead to sub-compo-
nent overload even though the overall service is
operating within acceptable load levels. See the
note below in section 2.8 on the “big red
switch” as one way of gracefully degrading un-
der excess load. The general rule is to attempt
to gracefully degrade rather than hard failing
and to block entry to the service before giving
uniform poor service to all users.

Partition the service. Partitions should be infin-
itely-adjustable and fine-grained, and not be
bounded by any real world entity (person, col-
lection ...). If the partition is by company, then
a big company will exceed the size of a single
partition. If the partition is by name prefix, then
eventually all the P’s, for example, won’t fit on
a single server. We recommend using a look-up
table at the mid-tier that maps fine-grained enti-
ties, typically users, to the system where their
data is managed. Those fine-grained partitions
can then be moved freely between servers.
Understand the network design. Test early to
understand what load is driven between servers
in a rack, across racks, and across data centers.
Application developers must understand the
network design and it must be reviewed early
with networking specialists on the operations
team.

Analyze throughput and latency. Analysis of the
throughput and latency of core service user in-
teractions should be performed to understand
impact. Do so with other operations running
such as regular database maintenance, opera-
tions configuration (new users added, users mi-
grated), service debugging, etc. This will help
catch issues driven by periodic management
tasks. For each service, a metric should emerge
for capacity planning such as user requests per
second per system, concurrent on-line users per
system, or some related metric that maps rele-
vant work load to resource requirements.

Treat operations utilities as part of the service.
Operations utilities produced by development,
test, program management, and operations should
be code-reviewed by development, checked into
the main source tree, and tracked on the same

Hamilton

schedule and with the same testing. Frequently
these utilities are mission critical and yet nearly
untested.

Understand access patterns. When planning
new features, always consider what load they
are going to put on the backend store. Often the
service model and service developers become
so abstracted away from the store that they lose
sight of the load they are putting on the under-
lying database. A best practice is to build it into
the spec with a section such as. “What impacts
will this feature have on the rest of the infra-
structure?”” Then measure and validate the fea-
ture for load when it goes live.

Version everything. Expect to run in a mixed-
version environment. The goal is to run single
version software but multiple versions will be
live during rollout and production testing. Ver-
sions n and n+1 of all components need to co-
exist peacefully.

Keep the unit/functional tests from the last re-
lease. These tests are a great way of verifying
that version n-1 functionality doesn’t get bro-
ken. We recommend going one step further and
constantly running service verification tests in
production (more detail below).

Avoid single points of failure. Single points of
failure will bring down the service or portions
of the service when they fail. Prefer stateless
implementations. Don’t affinitize requests or
clients to specific servers. Instead, load balance
over a group of servers able to handle the load.
Static hashing or any static work allocation to
servers will suffer from data and/or query skew
problems over time. Scaling out is easy when
machines in a class are interchangeable. Data-
bases are often single points of failure and data-
base scaling remains one of the hardest prob-
lems in designing internet-scale services. Good
designs use fine-grained partitioning and don’t
support cross-partition operations to allow effi-
cient scaling across many database servers. All
database state is stored redundantly (on at least
one) fully redundant hot standby server and
failover is tested frequently in production.

Automatic Management and Provisioning

Many services are written to alert operations on
failure and to depend upon human intervention for re-
covery. The problem with this model starts with the
expense of a 24x7 operations staff. Even more impor-
tant is that if operations engineers are asked to make
tough decisions under pressure, about 20% of the time
they will make mistakes. The model is both expensive
and error-prone, and reduces overall service reliability.

Designing for automation, however, involves sig-
nificant service-model constraints. For example, some
of the large services today depend upon database sys-
tems with asynchronous replication to a secondary,
back-up server. Failing over to the secondary after the

21st Large Installation System Administration Conference (LISA °07)

Hamilton

primary isn’t able to service requests loses some cus-
tomer data due to replicating asynchronously. However,
not failing over to the secondary leads to service down-
time for those users whose data is stored on the failed
database server. Automating the decision to fail over is
hard in this case since its dependent upon human judg-
ment and accurately estimating the amount of data loss
compared to the likely length of the down time. A sys-
tem designed for automation pays the latency and
throughput cost of synchronous replication. And, hav-
ing done that, failover becomes a simple decision: if the
primary is down, route requests to the secondary. This
approach is much more amenable to automation and is
considerably less error prone.

Automating administration of a service after de-
sign and deployment can be very difficult. Successful
automation requires simplicity and clear, easy-to-make
operational decisions. This in turn depends on a care-
ful service design that, when necessary, sacrifices
some latency and throughput to ease automation. The
trade-off is often difficult to make, but the administra-
tive savings can be more than an order of magnitude
in high-scale services. In fact, the current spread be-
tween the most manual and the most automated ser-
vice we’ve looked at is a full two orders of magnitude
in people costs.

Best practices in designing for automation include:

¢ Be restartable and redundant. All operations must
be restartable and all persistent state stored redun-
dantly.

e Support geo-distribution. All high scale services
should support running across several hosting
data centers. In fairness, automation and most
of the efficiencies we describe here are still
possible without geo-distribution. But lacking
support for multiple data center deployments
drives up operations costs dramatically. With-
out geo-distribution, it’s difficult to use free ca-
pacity in one data center to relieve load on a
service hosted in another data center. Lack of
geo-distribution is an operational constraint that
drives up costs.

¢ Automatic provisioning and installation. Provi-
sioning and installation, if done by hand, is
costly, there are too many failures, and small
configuration differences will slowly spread
throughout the service making problem deter-
mination much more difficult.

¢ Configuration and code as a unit. Ensure that
o the development team delivers the code

and the configuration as a single unit,

o the unit is deployed by test in exactly the
same way that operations will deploy it,
and

o operations deploys them as a unit.

Services that treat configuration and code as a

unit and only change them together are often
more reliable.

On Designing and Deploying Internet-Scale Services

¢ If a configuration change must be made in pro-
duction, ensure that all changes produce an au-
dit log record so it’s clear what was changed,
when and by whom, and which servers were ef-
fected (see section 2.7). Frequently scan all
servers to ensure their current state matches the
intended state. This helps catch install and con-
figuration failures, detects server misconfigura-
tions early, and finds non-audited server config-
uration changes.

e Manage server roles or personalities rather than
servers. Every system role or personality should
support deployment on as many or as few servers
as needed.

e Multi-system failures are common. Expect fail-
ures of many hosts at once (power, net switch,
and rollout). Unfortunately, services with state
will have to be topology-aware. Correlated fail-
ures remain a fact of life.

* Recover at the service level. Handle failures and
correct errors at the service level where the full
execution context is available rather than in
lower software levels. For example, build re-
dundancy into the service rather than depending
upon recovery at the lower software layer.

¢ Never rely on local storage for non-recoverable in-
formation. Always replicate all the non-ephemeral
service state.

o Keep deployment simple. File copy is ideal as it
gives the most deployment flexibility. Mini-
mize external dependencies. Avoid complex in-
stall scripts. Anything that prevents different
components or different versions of the same
component from running on the same server
should be avoided.

e Fail services regularly. Take down data centers,
shut down racks, and power off servers. Regu-
lar controlled brown-outs will go a long way to
exposing service, system, and network weak-
nesses. Those unwilling to test in production
aren’t yet confident that the service will contin-
ue operating through failures. And, without
production testing, recovery won’t work when
called upon.

Dependency Management

Dependency management in high-scale services
often doesn’t get the attention the topic deserves. As a
general rule, dependence on small components or ser-
vices doesn’t save enough to justify the complexity of
managing them. Dependencies do make sense when

1. the components being depended upon are sub-
stantial in size or complexity, or
2. the service being depended upon gains its value
in being a single, central instance.
Examples of the first class are storage and consensus
algorithm implementations. Examples of the second
class of are identity and group management systems.
The whole value of these systems is that they are a

21st Large Installation System Administration Conference (LISA ’07) 237

On Designing and Deploying Internet-Scale Services

single, shared instance so multi-instancing to avoid
dependency isn’t an option.

Assuming that dependencies are justified accord-
ing to the above rules, some best practices for manag-
ing them are:

e Expect latency. Calls to external components
may take a long time to complete. Don’t let de-
lays in one component or service cause delays
in completely unrelated areas. Ensure all inter-
actions have appropriate timeouts to avoid ty-
ing up resources for protracted periods. Opera-
tional idempotency allows the restart of re-
quests after timeout even though those requests
may have partially or even fully completed. En-
sure all restarts are reported and bound restarts
to avoid a repeatedly failing request from con-
suming ever more system resources.

¢ |solate failures. The architecture of the site must
prevent cascading failures. Always ““fail fast.”
When dependent services fail, mark them as
down and stop using them to prevent threads
from being tied up waiting on failed compo-
nents.

e Use shipping and proven components. Proven
technology is almost always better than operat-
ing on the bleeding edge. Stable software is
better than an early copy, no matter how valu-
able the new feature seems. This rule applies to
hardware as well. Stable hardware shipping in
volume is almost always better than the small
performance gains that might be attained from
early release hardware.

¢ Implement inter-service monitoring and alerting.
If the service is overloading a dependent ser-
vice, the depending service needs to know and,
if it can’t back-off automatically, alerts need to
be sent. If operations can’t resolve the problem
quickly, it needs to be easy to contact engineers
from both teams quickly. All teams with depen-
dencies should have engineering contacts on
the dependent teams.

e Dependent services require the same design
point. Dependent services and producers of de-
pendent components need to be committed to at
least the same SLA as the depending service.

¢ Decouple components. Where possible, ensure
that components can continue operation, per-
haps in a degraded mode, during failures of
other components. For example, rather than re-
authenticating on each connect, maintain a ses-
sion key and refresh it every N hours indepen-
dent of connection status. On reconnect, just
use existing session key. That way the load on
the authenticating server is more consistent and
login storms are not driven on reconnect after
momentary network failure and related events.

Release Cycle and Testing

Testing in production is a reality and needs to be
part of the quality assurance approach used by all

Hamilton

internet-scale services. Most services have at least one
test lab that is as similar to production as (affordably)
possible and all good engineering teams use produc-
tion workloads to drive the test systems realistically.
Our experience has been, however, that as good as
these test labs are, they are never full fidelity. They al-
ways differ in at least subtle ways from production. As
these labs approach the production system in fidelity,
the cost goes asymptotic and rapidly approaches that
of the production system.

We instead recommend taking new service re-
leases through standard unit, functional, and produc-
tion test lab testing and then going into limited pro-
duction as the final test phase. Clearly we don’t want
software going into production that doesn’t work or
puts data integrity at risk, so this has to be done care-
fully. The following rules must be followed:

1. the production system has to have sufficient re-
dundancy that, in the event of catastrophic new
service failure, state can be quickly be recov-
ered,

2. data corruption or state-related failures have to
be extremely unlikely (functional testing must
first be passing),

3. errors must be detected and the engineering
team (rather than operations) must be monitor-
ing system health of the code in test, and

4. it must be possible to quickly roll back all
changes and this roll back must be tested before
going into production.

This sounds dangerous. But we have found that
using this technique actually improves customer expe-
rience around new service releases. Rather than de-
ploying as quickly as possible, we put one system in
production for a few days in a single data center. Then
we bring one new system into production in each data
center. Then we’ll move an entire data center into pro-
duction on the new bits. And finally, if quality and
performance goals are being met, we deploy globally.
This approach can find problems before the service is
at risk and can actually provide a better customer ex-
perience through the version transition. Big-bang de-
ployments are very dangerous.

Another potentially counter-intuitive approach we
favor is deployment mid-day rather than at night. At
night, there is greater risk of mistakes. And, if anom-
alies crop up when deploying in the middle of the
night, there are fewer engineers around to deal with
them. The goal is to minimize the number of engineer-
ing and operations interactions with the system over-
all, and especially outside of the normal work day, to
both reduce costs and to increase quality.

Some best practices for release cycle and testing
include:
e Ship often. Intuitively one would think that
shipping more frequently is harder and more er-
ror prone. We’ve found, however, that more

238 21st Large Installation System Administration Conference (LISA ’07)

Hamilton

frequent releases have less big-bang changes.
Consequently, the releases tend to be higher
quality and the customer experience is much
better. The acid test of a good release is that the
user experience may have changed but the
number of operational issues around availabili-
ty and latency should be unchanged during the
release cycle. We like shipping on 3-month cy-
cles, but arguments can be made for other
schedules. Our gut feel is that the norm will
eventually be less than three months, and many
services are already shipping on weekly sched-
ules. Cycles longer than three months are dan-
gerous.

Use production data to find problems. Quality
assurance in a large-scale system is a data-min-
ing and visualization problem, not a testing
problem. Everyone needs to focus on getting
the most out of the volumes of data in a produc-
tion environment. A few strategies are:

o Measureable release criteria. Define specif-
ic criteria around the intended user experi-
ence, and continuously monitor it. If avail-
ability is supposed to be 99%, measure that
availability meets the goal. Both alert and
diagnose if it goes under.

o Tune goals in real time. Rather than getting
bogged down deciding whether the goal
should be 99% or 99.9% or any other goal,
set an acceptable target and then ratchet it
up as the system establishes stability in
production.

o Always collect the actual numbers. Collect
the actual metrics rather than red and green
or other summary reports. Summary re-
ports and graphs are useful but the raw da-
ta is needed for diagnosis.

o Minimize false positives. People stop pay-
ing attention very quickly when the data is
incorrect. It’s important to not over-alert or
operations staff will learn to ignore them.
This is so important that hiding real prob-
lems as collateral damage is often accept-
able.

o Analyze trends. This can be used for pre-
dicting problems. For example, when data
movement in the system diverges from the
usual rate, it often predicts a bigger prob-
lem. Exploit the available data.

o Make the system health highly visible. Re-
quire a globally available, real-time dis-
play of service health for the entire organi-
zation. Have an internal website people
can go at any time to understand the cur-
rent state of the service.

o Monitor continuously. It bears noting that
people must be looking at all the data ev-
ery day. Everyone should do this, but make

21st Large Installation System Administration Conference (LISA ’07)

On Designing and Deploying Internet-Scale Services

it the explicit job of a subset of the team to
do this.

e Invest in engineering. Good engineering mini-
mizes operational requirements and solves prob-
lems before they actually become operational is-
sues. Too often, organizations grow operations to
deal with scale and never take the time to engi-
neer a scalable, reliable architecture. Services
that don’t think big to start with will be scram-
bling to catch up later.

e Support version roll-back. Version roll-back is
mandatory and must be tested and proven be-
fore roll-out. Without roll-back, any form of
production-level testing in very high risk. Re-
verting to the previous version is a rip cord that
should always be available on any deployment.

¢ Maintain forward and backward compatibility.
This vital point strongly relates to the previous
one. Changing file formats, interfaces, logging/
debugging, instrumentation, monitoring and con-
tact points between components are all potential
risk. Don’t rip out support for old file formats
until there is no chance of a roll back to that old
format in the future.

e Single-server deployment. This is both a test
and development requirement. The entire ser-
vice must be easy to host on a single system.
Where single-server deployment is impossible
for some component (e.g., a dependency on an
external, non-single box deployable service),
write an emulator to allow single-server testing.
Without this, unit testing is difficult and doesn’t
fully happen. And if running the full system is
difficult, developers will have a tendency to take
a component view rather than a systems view.

o Stress test for load. Run some tiny subset of the
production systems at twice (or more) the load
to ensure that system behavior at higher than
expected load is understood and that the sys-
tems don’t melt down as the load goes up.

¢ Perform capacity and performance testing prior
to new releases. Do this at the service level and
also against each component since work load
characteristics will change over time. Problems
and degradations inside the system need to be
caught early.

¢ Build and deploy shallowly and iteratively. Get a
skeleton version of the full service up early in
the development cycle. This full service may
hardly do anything at all and may include
shunts in places but it allows testers and devel-
opers to be productive and it gets the entire
team thinking at the user level from the very
beginning. This is a good practice when build-
ing any software system, but is particularly im-
portant for services.

¢ Test with real data. Fork user requests or work-
load from production to test environments. Pick

239

On Designing and Deploying Internet-Scale Services

up production data and put it in test environ-
ments. The diverse user population of the prod-
uct will always be most creative at finding
bugs. Clearly, privacy commitments must be
maintained so it’s vital that this data never leak
back out into production.

Run system-level acceptance tests. Tests that
run locally provide sanity check that speeds it-
erative development. To avoid heavy mainte-
nance cost they should still be at system level.
Test and develop in full environments. Set aside
hardware to test at interesting scale. Most im-
portantly, use the same data collection and min-
ing techniques used in production on these en-
vironments to maximize the investment.

Hardware Selection and Standardization

The usual argument for SKU standardization is
that bulk purchases can save considerable money. This
is inarguably true. The larger need for hardware stan-
dardization is that it allows for faster service deploy-
ment and growth. If each service is purchasing their
own private infrastructure, then each service has to

1. determine which hardware currently is the best
cost/performing option,
2. order the hardware, and
3. do hardware qualification and software deploy-
ment once the hardware is installed in the data
center.
This usually takes a month and can easily take more.

A better approach is a “services fabric” that in-
cludes a small number of hardware SKUs and the au-
tomatic management and provisioning infrastructure
on which all service are run. If more machines are
needed for a test cluster, they are requested via a web
service and quickly made available. If a small service
gets more successful, new resources can be added
from the existing pool. This approach ensures two vi-
tal principles: 1) all services, even small ones, are us-
ing the automatic management and provisioning infra-
structure and 2) new services can be tested and de-
ployed much more rapidly.

Best practices for hardware selection include:
Use only standard SKUs. Having a single or
small number of SKUs in production allows re-
sources to be moved fluidly between services
as needed. The most cost-effective model is to
develop a standard service-hosting framework
that includes automatic management and provi-
sioning, hardware, and a standard set of shared
services. Standard SKUs is a core requirement
to achieve this goal.

Purchase full racks. Purchase hardware in fully
configured and tested racks or blocks of multi-
ple racks. Racking and stacking costs are inex-
plicably high in most data centers, so let the
system manufacturers do it and wheel in full
racks.

Hamilton

* Write to a hardware abstraction. Write the service
to an abstract hardware description. Rather than
fully-exploiting the hardware SKU, the service
should neither exploit that SKU nor depend up-
on detailed knowledge of it. This allows the
2-way, 4-disk SKU to be upgraded over time as
better cost/performing systems come available.
The SKU should be a virtual description that in-
cludes number of CPUs and disks, and a mini-
mum for memory. Finer-grained information
about the SKU should not be exploited.
Abstract the network and naming. Abstract the
network and naming as far as possible, using
DNS and CNAMEs. Always, always use a
CNAME. Hardware breaks, comes off lease,
and gets repurposed. Never rely on a machine
name in any part of the code. A flip of the
CNAME in DNS is a lot easier than changing
configuration files, or worse yet, production
code. If you need to avoid flushing the DNS
cache, remember to set Time To Live suffi-
ciently low to ensure that changes are pushed as
quickly as needed.

Operations and Capacity Planning

The key to operating services efficiently is to
build the system to eliminate the vast majority of oper-
ations administrative interactions. The goal should be
that a highly-reliable, 24x7 service should be main-
tained by a small 8x5 operations staff.

However, unusual failures will happen and there
will be times when systems or groups of systems can’t
be brought back on line. Understanding this possibili-
ty, automate the procedure to move state off the dam-
aged systems. Relying on operations to update SQL
tables by hand or to move data using ad hoc tech-
niques is courting disaster. Mistakes get made in the
heat of battle. Anticipate the corrective actions the op-
erations team will need to make, and write and test
these procedures up-front. Generally, the development
team needs to automate emergency recovery actions
and they must test them. Clearly not all failures can be
anticipated, but typically a small set of recovery ac-
tions can be used to recover from broad classes of fail-
ures. Essentially, build and test “recovery kernels”
that can be used and combined in different ways de-
pending upon the scope and the nature of the disaster.

The recovery scripts need to be tested in produc-
tion. The general rule is that nothing works if it isn’t
tested frequently so don’t implement anything the
team doesn’t have the courage to use. If testing in pro-
duction is too risky, the script isn’t ready or safe for
use in an emergency. The key point here is that disas-
ters happen and it’s amazing how frequently a small
disaster becomes a big disaster as a consequence of a
recovery step that doesn’t work as expected. Antici-
pate these events and engineer automated actions to
get the service back on line without further loss of da-
ta or up time.

240 21st Large Installation System Administration Conference (LISA ’07)

Hamilton

¢ Make the development team responsible. Amazon
is perhaps the most aggressively down this path
with their slogan “you built it, you manage it.”
That position is perhaps slightly stronger than the
one we would take, but it’s clearly the right gen-
eral direction. If development is frequently called
in the middle of the night, automation is the like-
ly outcome. If operations is frequently called, the
usual reaction is to grow the operations team.
Soft delete only. Never delete anything. Just
mark it deleted. When new data comes in,
record the requests on the way. Keep a rolling
two week (or more) history of all changes to
help recover from software or administrative
errors. If someone makes a mistake and forgets
the where clause on a delete statement (it has
happened before and it will again), all logical
copies of the data are deleted. Neither RAID
nor mirroring can protect against this form of
error. The ability to recover the data can make
the difference between a highly embarrassing
issue or a minor, barely noticeable glitch. For
those systems already doing off-line backups,
this additional record of data coming into the
service only needs to be since the last backup.
But, being cautious, we recommend going far-
ther back anyway.

Track resource allocation. Understand the costs of
additional load for capacity planning. Every ser-
vice needs to develop some metrics of use such
as concurrent users online, user requests per sec-
ond, or something else appropriate. Whatever the
metric, there must be a direct and known correla-
tion between this measure of load and the hard-
ware resources needed. The estimated load num-
ber should be fed by the sales and marketing
teams and used by the operations team in capaci-
ty planning. Different services will have different
change velocities and require different ordering
cycles. We’ve worked on services where we up-
dated the marketing forecasts every 90 days, and
updated the capacity plan and ordered equipment
every 30 days.

Make one change at a time. When in trouble, on-
ly apply one change to the environment at a
time. This may seem obvious, but we’ve seen
many occasions when multiple changes meant
cause and effect could not be correlated.

Make Everything Configurable. Anything that
has any chance of needing to be changed in
production should be made configurable and
tunable in production without a code change.
Even if there is no good reason why a value
will need to change in production, make it
changeable as long as it is easy to do. These
knobs shouldn’t be changed at will in produc-
tion, and the system should be thoroughly test-
ed using the configuration that is planned for

On Designing and Deploying Internet-Scale Services

production. But when a production problem
arises, it is always easier, safer, and much faster
to make a simple configuration change com-
pared to coding, compiling, testing, and deploy-
ing code changes.

Auditing, Monitoring and Alerting

The operations team can’t instrument a service in
deployment. Make substantial effort during develop-
ment to ensure that performance data, health data,
throughput data, etc. are all produced by every compo-
nent in the system.

Any time there is a configuration change, the ex-
act change, who did it, and when it was done needs to
be logged in the audit log. When production problems
begin, the first question to answer is what changes
have been made recently. Without a configuration au-
dit trail, the answer is always “‘nothing” has changed
and it’s almost always the case that what was forgotten
was the change that led to the question.

Alerting is an art. There is a tendency to alert on
any event that the developer expects they might find
interesting and so version-one services often produce
reams of useless alerts which never get looked at. To
be effective, each alert has to represent a problem.
Otherwise, the operations team will learn to ignore
them. We don’t know of any magic to get alerting cor-
rect other than to interactively tune what conditions
drive alerts to ensure that all critical events are alerted
and there are not alerts when nothing needs to be
done. To get alerting levels correct, two metrics can
help and are worth tracking: 1) alerts-to-trouble ticket
ratio (with a goal of near one), and 2) number of sys-
tems health issues without corresponding alerts (with a
goal of near zero).

¢ Instrument everything. Measure every customer
interaction or transaction that flows through the
system and report anomalies. There is a place
for “runners” (synthetic workloads that simu-
late user interactions with a service in produc-
tion) but they aren’t close to sufficient. Using
runners alone, we’ve seen it take days to even
notice a serious problem, since the standard
runner workload was continuing to be pro-
cessed well, and then days more to know why.
Data is the most valuable asset. If the normal
operating behavior isn’t well-understood, it’s
hard to respond to what isn’t. Lots of data on
what is happening in the system needs to be
gathered to know it really is working well.
Many services have gone through catastrophic
failures and only learned of the failure when the
phones started ringing.
Have a customer view of service. Perform end-
to-end testing. Runners are not enough, but
they are needed to ensure the service is fully
working. Make sure complex and important
paths such as logging in a new user are tested

21st Large Installation System Administration Conference (LISA ’07) 241

On Designing and Deploying Internet-Scale Services

242

by the runners. Avoid false positives. If a run-
ner failure isn’t considered important, change
the test to one that is. Again, once people be-
come accustomed to ignoring data, breakages
won’t get immediate attention.
Instrumentation required for production testing.
In order to safely test in production, complete
monitoring and alerting is needed. If a compo-
nent is failing, it needs to be detected quickly.
Latencies are the toughest problem. Examples
are slow I/O and not quite failing but process-
ing slowly. These are hard to find, so instru-
ment carefully to ensure they are detected.
Have sufficient production data. In order to find
problems, data has to be available. Build fine
grained monitoring in early or it becomes ex-
pensive to retrofit later. The most important da-
ta that we’ve relied upon includes:

o Use performance counters for all opera-
tions. Record the latency of operations and
number of operations per second at the
least. The waxing and waning of these val-
ues is a huge red flag.

o Audit all operations. Every time somebody

does something, especially something sig-
nificant, log it. This serves two purposes:
first, the logs can be mined to find out
what sort of things users are doing (in our
case, the kind of queries they are doing)
and second, it helps in debugging a prob-
lem once it is found.
A related point: this won’t do much good if
everyone is using the same account to ad-
minister the systems. A very bad idea but
not all that rare.

o Track all fault tolerance mechanisms. Fault
tolerance mechanisms hide failures. Track
every time a retry happens, or a piece of
data is copied from one place to another, or
a machine is rebooted or a service restart-
ed. Know when fault tolerance is hiding
little failures so they can be tracked down
before they become big failures. We had a
2000-machine service fall slowly to only
400 available over the period of a few days
without it being noticed initially.

Track operations against important entities.
Make an “audit log” of everything signifi-
cant that has happened to a particular enti-
ty, be it a document or chunk of docu-
ments. When running data analysis, it’s
common to find anomalies in the data.
Know where the data came from and what
processing it’s been through. This is partic-
ularly difficult to add later in the project.
o Asserts. Use asserts freely and throughout
the product. Collect the resulting logs or
crash dumps and investigate them. For

o

Hamilton

systems that run different services in the
same process boundary and can’t use as-
serts, write trace records. Whatever the im-
plementation, be able to flag problems and
mine frequency of different problems.

o Keep historical data. Historical performance
and log data is necessary for trending and
problem diagnosis.

¢ Configurable logging. Support configurable log-
ging that can optionally be turned on or off as
needed to debug issues. Having to deploy new
builds with extra monitoring during a failure is
very dangerous.

¢ Expose health information for monitoring. Think
about ways to externally monitor the health of
the service and make it easy to monitor it in
production.

e Make all reported errors actionable. Problems
will happen. Things will break. If an unrecover-
able error in code is detected and logged or re-
ported as an error, the error message should in-
dicate possible causes for the error and suggest
ways to correct it. Un-actionable error reports
are not useful and over time, they get ignored
and real failures will be missed.

¢ Enable quick diagnosis of production problems.

o Give enough information to diagnose. When
problems are flagged, give enough informa-
tion that a person can diagnose it. Otherwise
the barrier to entry will be too high and the
flags will be ignored. For example, don’t just
say “10 queries returned no results.” Add
“and here is the list, and the times they hap-
pened.”

o Chain of evidence. Make sure that from be-
ginning to end there is a path for developer
to diagnose a problem. This is typically
done with logs.

o Debugging in production. We prefer a model
where the systems are almost never touched
by anyone including operations and that de-
bugging is done by snapping the image,
dumping the memory, and shipping it out of
production. When production debugging is
the only option, developers are the best
choice. Ensure they are well trained in what
is allowed on production servers. Our expe-
rience has been that the less frequently sys-
tems are touched in production, the happier
customers generally are. So we recommend
working very hard on not having to touch
live systems still in production.

o Record all significant actions. Every time the
system does something important, particu-
larly on a network request or modification
of data, log what happened. This includes
both when a user sends a command and
what the system internally does. Having this

21st Large Installation System Administration Conference (LISA °07)

Hamilton

record helps immensely in debugging prob-
lems. Even more importantly, mining tools
can be built that find out useful aggregates,
such as, what kind of queries are users doing
(i.e., which words, how many words, etc.)

Graceful Degradation and Admission Control

There will be times when DOS attacks or some
change in usage patterns causes a sudden workload
spike. The service needs be able to degrade gracefully
and control admissions. For example, during 9/11
most news services melted down and couldn’t provide
a usable service to any of the user base. Reliably de-
livering a subset of the articles would have been a bet-
ter choice. Two best practices, a “‘big red switch” and
admission control, need to be tailored to each service.
But both are powerful and necessary.

e Support a “big red switch.” The idea of the “big

red switch” originally came from Windows Live
Search and it has a lot of power. We’ve general-
ized it somewhat in that more transactional ser-
vices differ from Search in significant ways. But
the idea is very powerful and applicable any-
where. Generally, a “big red switch” is a de-
signed and tested action that can be taken when
the service is no longer able to meet its SLA, or
when that is imminent. Arguably referring to
graceful degradation as a “big red switch” is a
slightly confusing nomenclature but what is
meant is the ability to shed non-critical load in
an emergency.
The concept of a big red switch is to keep the vi-
tal processing progressing while shedding or de-
laying some non-critical workload. By design,
this should never happen but it’s good to have
recourse when it does. Trying to figure these out
when the service is on fire is risky. If there is
some load that can be queued and processed lat-
er, it’s a candidate for a big red switch. If it’s
possible to continue to operate the transaction
system while disabling advance querying, that’s
also a good candidate. The key thing is deter-
mining what is minimally required if the system
is in trouble, and implementing and testing the
option to shut off the non-essential services
when that happens. Note that a correct big red
switch is reversible. Resetting the switch should
be tested to ensure that the full service returns to
operation, including all batch jobs and other pre-
viously halted non-critical work.

¢ Control admission. The second important con-
cept is admission control. If the current load
cannot be processed on the system, bringing
more work load into the system just assures that
a larger cross section of the user base is going
to get a bad experience. How this gets done is
dependent on the system and some can do this
more easily than others. As an example, the last
service we led processed email. If the system

On Designing and Deploying Internet-Scale Services

was over-capacity and starting to queue, we
were better off not accepting more mail into the
system and let it queue at the source. The key
reason this made sense, and actually decreased
overall service latency, is that as our queues
built, we processed more slowly. If we didn’t al-
low the queues to build, throughput would be
higher. Another technique is to service premium
customers ahead of non-premium customers, or
known users ahead of guests, or guests ahead of
users if “try and buy” is part of the business
model.

® Meter admission. Another incredibly important
concept is a modification of the admission con-
trol point made above. If the system fails and
goes down, be able to bring it back up slowly
ensuring that all is well. It must be possible to
let just one user in, then let in 10 users/second,
and slowly ramp up. It’s vital that each service
have a fine-grained knob to slowly ramp up us-
age when coming back on line or recovering
from a catastrophic failure. This capability is
rarely included in the first release of any ser-
vice Where a service has clients, there must be
a means for the service to inform the client that
it’s down and when it might be up. This allows
the client to continue to operate on local data if
applicable, and getting the client to back-off
and not pound the service can make it easier to
get the service back on line. This also gives an
opportunity for the service owners to communi-
cate directly with the user (see below) and con-
trol their expectations. Another client-side trick
that can be used to prevent them all syn-
chronously hammering the server is to intro-
duce intentional jitter and per-entity automatic
backup.

Customer and Press Communication Plan

Systems fail, and there will be times when laten-
cy or other issues must be communicated to cus-
tomers. Communications should be made available
through multiple channels in an opt-in basis: RSS,
web, instant messages, email, etc. For those services
with clients, the ability for the service to communicate
with the user through the client can be very useful.
The client can be asked to back off until some specific
time or for some duration. The client can be asked to
run in disconnected, cached mode if supported. The
client can show the user the system status and when
full functionality is expected to be available again.

Even without a client, if users interact with the
system via web pages for example, the system state
can still be communicated to them. If users understand
what is happening and have a reasonable expectation
of when the service will be restored, satisfaction is
much higher. There is a natural tendency for service
owners to want to hide system issues but, over time,
we’ve become convinced that making information on

21st Large Installation System Administration Conference (LISA ’07) 243

On Designing and Deploying Internet-Scale Services

the state of the service available to the customer base
almost always improves customer satisfaction. Even in
no-charge systems, if people know what is happening
and when it’ll be back, they appear less likely to aban-
don the service.

Certain types of events will bring press coverage.
The service will be much better represented if these
scenarios are prepared for in advance. Issues like mass
data loss or corruption, security breach, privacy viola-
tions, and lengthy service down-times can draw the
press. Have a communications plan in place. Know
who to call when and how to direct calls. The skeleton
of the communications plan should already be drawn
up. Each type of disaster should have a plan in place
on who to call, when to call them, and how to handle
communications.

Customer Self-Provisioning and Self-Help

Customer self-provisioning substantially reduces
costs and also increases customer satisfaction. If a cus-
tomer can go to the web, enter the needed data and
just start using the service, they are happier than if
they had to waste time in a call processing queue.
We’ve always felt that the major cell phone carriers
miss an opportunity to both save and improve cus-
tomer satisfaction by not allowing self-service for
those that don’t want to call the customer support

group.
Conclusion

Reducing operations costs and improving service
reliability for a high scale internet service starts with
writing the service to be operations-friendly. In this
document we define operations-friendly and summa-
rize best practices in service design, development, de-
ployment, and operation from engineers working on
high-scale services.

Acknowledgements

We would like to thank Andrew Cencini (Rack-
able Systems), Tony Chen (Xbox Live), Filo D’Souza
(Exchange Hosted Services & SQL Server), Jawaid
Ekram (Exchange Hosted Services & Live Meeting),
Matt Gambardella (Rackable Systems), Eliot Gillum
(Windows Live Hotmail), Bill Hoffman (Windows
Live Storage), John Keiser (Windows Live Search),
Anastasios Kasiolas (Windows Live Storage), David
Nichols (Windows Live Messenger & Silverlight),
Deepak Patil (Windows Live Operations), Todd Ro-
man (Exchange Hosted Services), Achint Srivastava
(Windows Live Search), Phil Smoot (Windows Live
Hotmail), Yan Leshinsky (Windows Live Search),
Mike Ziock (Exchange Hosted Services & Live Meet-
ing), Jim Gray (Microsoft Research), and David Tread-
well (Windows Live Platform Services) for background
information, points from their experience, and com-
ments on early drafts of this paper. We particularly ap-
preciated the input from Bill Hoffman of the Windows

Hamilton

Live Hotmail team and Achint Srivastava and John
Keiser, both of the Windows Live Search team.

References

[1] Isard, Michael, ““Autopilot: Automatic Data Center
Operation,” Operating Systems Review, April,
2007, http://research.microsoft.com/users/misard/
papers/osr2007.pdf.

[2] Patterson, David, Recovery Oriented Computing,
Berkeley, CA, 2005, http://roc.cs.berkeley.edu/ .

[3] Patterson, David, Recovery Oriented Computing:
A New Research Agenda for a New Century,
February, 2002, http://www.cs.berkeley.edu/ pat-
trsn/talks/HPCAkeynote.ppt .

[4] Fox, Armando and D. Patterson, ““Self-Repairing
Computers,” Scientific American, June, 2003,
http://www.sciam.com/article.cfm?articleID=000D
AA41-3B4E-1EB7-BDCOS09ECS88EEDF .

[5] Fox, Armand, Crash-Only Software, Stanford,
CA, 2004, http://crash.stanford.edu/ .

[6] Hoftman, Bill, Windows Live Storage Platform,
private communication, 2006.

[7] Shakib, Darren, Windows Live Search, private
communication, 2004.

244 21st Large Installation System Administration Conference (LISA ’07)

