
Designing and Deploying
Internet-Scale Services

James Hamilton

2008.01.17

Architect, Windows Live Platform Services

JamesRH@microsoft.com

Web: research.microsoft.com/~jamesrh

Blog: perspectives.mvdirona.com

Agenda
• Overview

• Recovery-Oriented Computing

• Overall Application Design

• Operational Issues

• Summary

21/17/2008

Contributors: Search, Mail, Exchange Hosted Services, Live Collaboration Server, Contacts &
Storage, Spaces, Xbox Live, Rackable Systems, Messenger, WinLive Operations, & MS.com Ops

• 15 years in database engine development
– Lead architect on IBM DB2
– Architect on SQL Server

• Led variety of core engine teams including SQL client, SQL
compiler, optimizer, XML, full text search, execution engine,
protocols, etc.

• Led the Exchange Hosted Services Team
– Email anti-spam, anti-virus, and archiving for 2.2m seats

with $27m revenue
– ~700 servers in 10 data centers world-wide

• Currently architect on Windows Live Platform Services
• Automation & redundancy is only way to:

– Reduce costs
– Improve rate of innovation
– Reduce operational failures and downtime

Background and biases

31/17/2008

• System-to-admin ratio indicator of admin costs
– Tracking total ops costs often gamed

• Outsourcing halves ops costs without addressing real issues

– Inefficient properties: <10:1

– Enterprise: 150:1

– Best services: over 2,000:1

• 80% of ops issues from design and development
– Poorly written applications are difficult to automate

• Focus on reducing ops costs during design &
development

Motivation

1/17/2008 4

What does operations do?

1/17/2008 Windows Live Platform Services 5

• 51% is deployment & incident management (known resolution)

• Teams: Messenger, Contacts and Storage & business unit IT services

Architectural
Engineering Total

8%

Deployment
Management

Total
31%

Incident
Management

Total
20%

Problem
Engineering Total

10%

Overhead Total
11%

Requests Total
6%

Software
Development

Total
7%

Site Management
Total
7%

Source: Deepak Patil, Global
Foundation Services (8/14/2006)

ROC design pattern

• Recover-oriented computing (ROC)
– Assume software & hardware will fail frequently & unpredictably

• Heavily instrument applications to detect failures

App
Bohr Bug Bohr bug: Repeatable functional

software issue (functional bugs);
should be rare in production
Heisenbug: Software issue that only
occurs in unusual cross-request
timing issues or the pattern of long
sequences of independent
operations; some found only in
production

Urgent
Alert

Heisenbug

Reboot
Failure

Restart

Re-image
Failure

Replace
Failure

Machine out of rotation and power down

Set LCD/LED to "needs service"

1/17/2008 6Windows Live Platform Services

• Single-box deployment

• Development and testing in full environment

• Quick service health check

• Zero trust of underlying components

• Pod or cluster independence

• Implement & test ops tools and utilities

• Simplicity throughout

• Partition & version everything

Overall application design

1/17/2008 7

Design for auto-mgmt & provisioning

• Support for geo-distribution

• Auto-provisioning & auto-installation mandatory

• Manage "service role" rather than servers

• Multi-system failures are common
– Limit automation range of action

• Never rely on local, non-replicated persistent state

• Don't worry about clean shutdown
– Often won't get it & need this path tested

• Explicitly install everything and then verify

• Force fail all services and components regularly

1/17/2008 8Windows Live Platform Services

• Ship frequently:
– Small releases ship more smoothly
– Increases pace of innovation
– Long stabilization periods not required in services

• Use production data to find problems (traffic capture)
– Measurable release criteria
– Release criteria includes quality and throughput data

• Track all recovered errors to protect against automation-
supported service entropy

• Test all error paths in integration & in production
• Test in production via incremental deployment & roll-back

– Never deploy without tested roll-back
– Continue testing after release

Release cycle & testing

91/17/2008

• Incrementally release with schema changes?
– Old code must run against new schema, or
– Two-phase process (avoid if possible)

• Update code to support both, commit changes, and then upgrade schema

• Incrementally release with user experience (UX) changes?
– Separate UX from infrastructure
– Ensure old UX works with new infrastructure
– Deploy infrastructure incrementally
– On success, bring a small beta population onto new UX
– On continued success, announce new UX and set a date to

roll out
• Client-side code?

– Ensure old & new clients both run with new infrastructure

Design for incremental release

1/17/2008 10

• No amount of "head room" is sufficient

– Even at 25-50% H/W utilization, spikes will exceed 100%

• Prevent overload through admission control

• Graceful degradation prior to admission control

– Find less resource-intensive modes to provide (possibly)
degraded services

• Related concept: Metered rate-of-service admission

– Service login typically more expensive than steady state

– Allow a single or small number of users in when restarting
a service after failure

Graceful degradation & admission control

1/17/2008 11

• Produce perf data, health data & throughput data

• All config changes need to be tracked via audit log

• Alerting goals:
– No customer events without an alert (detect problems)

– Alert to event ratio nearing 1 (don’t false alarm)

• Alerting is an art … need to tune alerting frequently
– Can’t embed in code (too hard to change)

– Code produces events, events tracked centrally, alerts produced via
queries over event DB

• Testing in production requires very reliable monitoring
– Combination of detection & capability to roll back allows nimbleness

• Tracked events for all interesting issues
– Latencies are toughest issues to detect

Auditing, monitoring, & alerting

1/17/2008 12

• Expect latency & failures in dependent services

– Run on cached data or offer degraded services

– Test failure & latency frequently in production

• Don’t depend upon features not yet shipped

– It takes time to work out reliability & scaling issues

• Select dependent components & services thoughtfully

– On-server components need consistent quality goals

– Dependent services should be large granule (“worth” sharing)

• Isolate services & decouple components

– Contain faults within services

– Assume different upgrade rates

– Rather than auth on each connect, use session key and refresh every N
hours (avoids login storms)

Dependency management

131/17/2008

• Systems fail & you will experience latency

• Communicate through multiple channels

– Opt-in RSS, web, IM, email, etc.

– If app has client, report details through
client

• Set ETA expectations & inform

Customer & press communications plan

1/17/2008 14

• Some events will bring press attention

• There is a natural tendency to hide systems issues

• Prepare for serious scenarios in advance

• Data loss, data corruption, security breach, privacy violation

• Prepare communications skeleton plan in advance

• Who gets called, communicates with the press, & how data is gathered

• Silence typically interpreted as hiding something or lack of control

• Reduced operations costs & improved reliability
through automation

• Full automation dependent upon partitioning &
redundancy

• Each human administrative interaction is an
opportunity for error

• Design for failure in all components & test
frequently

• Rollback & deep monitoring allows safe
production testing

Summary

1/17/2008 15

• Designing & Deploying Internet-Scale Services paper:
– http://research.microsoft.com/~JamesRH/TalksAndPapers/JamesRH_Lisa.pdf

• Autopilot: Automatic Data Center Operation
– http://research.microsoft.com/users/misard/papers/osr2007.pdf

• Recovery-Oriented Computing
– http://roc.cs.berkeley.edu/
– http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
– http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-

BDC0809EC588EEDF

• These slides:
– http://research.microsoft.com/~jamesrh

• Email:
– JamesRH@microsoft.com

• External Blog:
– http://perspectives.mvdirona.com

More Information

1/17/2008 16

http://research.microsoft.com/~JamesRH/TalksAndPapers/JamesRH_Lisa.pdf
http://research.microsoft.com/users/misard/papers/osr2007.pdf
http://roc.cs.berkeley.edu/
http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://research.microsoft.com/~jamesrh
http://perspectives.mvdirona.com/

