Transaction Processing in a Peer-to-Peer World

Tobin J. Lehman

 IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
(408) 927-1781
toby@almaden.ibm.com

A position paper for the

Ninth International Workshop on

High Performance Transaction Systems (HPTS)

Asilomar Conference Center

Pacific Grove, California

October 14-17, 2001
Abstract

With the evolution of the web and the creation of software components known as “web services, we’re finding that the traditional “back office” software is being “componentized” and mixed with client side applications. As a result, software components residing on virtually any computer will have the potential for being drafted into service if they are needed to serve particular roles in larger aggregate applications. While this interesting shift in software creation and management offers great leaps in flexibility and productivity, it also means that the standards for communication protocols and component interoperation must be rigidly enforced in order to support the upcoming diversity of software components.

There Can Be Only One! (well, maybe five…)

In the 1940's Thomas Watson Sr., then chairman of IBM, announced that there would never be a need for more than five computers in the whole world. He was right of course, but he was ahead of his time. One day soon there will be no more than five “computer systems” – in fact, it is likely that there will be just one. It will comprise over a billion nodes, a few zettabytes of storage, 100 (or so) different software platforms, many different (but somewhat compatible) middleware components and virtually an infinite number applications. Sure, there will be “roped off” parts of this computer – places that are harder to reach than others. There will be firewalls, Intranets, circles of trust, diamonds of distrust (mostly tracked by the NSA) and enterprise boundaries, but any node that wants to be “reached” by another node will be able to arrange to make that happen. In short, everything will be connected, from the largest mainframe to the smallest piece of digital jewelry.

All the Way with SOA!

Though we’re still a ways away from the full interconnectivity of the future, we can still benefit from the “pretty good” connectivity that we have today. The Internet provides us access to a large set of “Web Services” – web-based software components that allows us to build aggregate applications from the pieces of software that we find out there. Of course, at the moment, the services available through the web, or even the more general Internet, are mostly incompatible. The standards that define the description, the registration, the employment, the payment and the tracking of these services are growing and evolving as we speak. Sun Microsystems’ Jini [1], HP’s e-speak [2], Microsoft’s .NET [3] and IBM’s Web Services [4] are examples of recently announced products that belong to this family of “Service Oriented Architectures” (SOA) that are trying to address some of the issues surrounding the difficulty of managing and directing software services. [5]

Getting Near to Peer-to-Peer

Separate from the evolution of the software building blocks (in which I believe SOA will play a significant role), is the recent trend of “Peer-to-Peer” activity. Napster [6], Gnutella [7] and even Groove [8] [9] are exploring ways to empower the user to get direct control over the choice of which entities they interact with to complete some task. For example, Napster is a domain-specific application – music for the masses using an inventive “barter system”. The actual mechanics behind Napster are as follows: a centralized (but replicated) directory server shows where the various music files can be found. A user consults the Napster directory and then follows the link to the specific site containing the desired file(s), whereupon the user can download those files. There are several things about Napster that are interesting. The responsibility and mechanism for file sharing are distributed. The Napster directory doesn’t contain any audio files itself. No, the audio files are all kept distributed and so the responsibility is distributed with it. Freedom comes with the flexibility of distributed ownership of the problem.

Though Napster, in a sense, is just a file sharing mechanism, it is specific to the sharing of music. Gnutella [7] is a more general-purpose sharing mechanism that can be used to share any files or any application data. Furthermore, Gnutella is distributed – that is, the “directory” that is centralized in Napster is actually spread over a set of machines in Gnutella. Thus, the overall Gnutella “society” is not affected by anyone machine going down and no single controlling point can be attacked to bring down the overall Gnutella society. Gnutella is a much more fault tolerant system, but it is also much harder to extend with additional group function (more flexibility typically means less control). Groove [8] [9] is a centralized system that was created to augment a user’s ability to interact with other users – in terms of file, document or application data sharing, Groove removes many of the complications of dealing with multiple users and crossing machine or platform boundaries.

What’s it all About, Alfie?

Now, all of this brings me to the point of this paper. How are we going to get all of this to work together? We have a large collection of connected machines (the Internet). We have emerging standards for software interoperability (Services Oriented Architectures). We have a new paradigm for machine interaction that focuses on explicit connections between client machines (Peer-to-Peer). Now, what is going to happen when we want to build larger software systems using SOA and P2P? Apart from several software components that don’t really exist today (e.g. automated service composition components and sophisticated service managers), there is the matter of the transaction coordinators. The job of the next generation transaction coordinator will be to manage a much larger set of independent components than is common today.

Consider the following example. I’m driving in my car and I’d like directions to the nearest grocery store spoken to me (over my MP3 player) in Swahili, my seventh language. There is a service broker that sets up the entire transaction, lining up all of the components, arranging for them to all play their proper roles and also for each component to be paid for its contribution, as long as the job was done properly. My request goes into a car user interface component, which processes the request. The service broker employs the car GPS service (to get my current location), BigBook [10] – a web service that gets a list of available grocery stores near me, MapQuest [11] – a web service that gives me driving instructions (in text) from where I am now to the store I pick from the list of choices from BigBook, a text to speech service (that turns the text into an MP3 file) and a wireless delivery service that ships the MP3 file to my car player. The service broker also lines up a transaction coordinator, a transaction auditor and an escrow service that holds the completed information and the payment for that service, awaiting the final result of the transaction. Upon completion of the transaction (e.g. transaction commit), each of the services is paid for its contributions and the requested information is delivered to the user.

The example cited here is a very simple one, and yet it is quite complex when you consider the number of components involved and the diversity of their function. The next generation transaction coordinators will need to deal with millions of different components in the course of a “web year” and must be able to work with all of them. We are far from ready for this step. If we can’t agree on the exact format of the two-phase commit messages among the various SQL database system products (and, apparently, we still can’t [12]), then it’s clear that we have a long ways to go. It is imperative that we create rigid standards for distributed coordination and commit.

The next generation of SOA programming in a P2P environment is going to require a whole host of intermediaries that do the work of auditing, monitoring, authenticating, orchestrating and validating these complex operations. Each of these must follow a specific, agreed upon protocol for coordination before we can reach the next stage of evolution of the Internet. Sure, transaction-processing volume will always be an interesting problem for HPTS to address – large system design and creation are interesting problems. But, it is the problem of handling the upcoming diversity and flexibility of software components that will define the winners of the next generation.

References and Notes

[1] http://www.sun.com/jini
[2] http://www.e-speak.hp.com/
[3] http://www.microsoft.com/net/default.asp
[4] http://www-106.ibm.com/developerworks/webservices/
[5] http://www7.software.ibm.com/vad.nsf/data/document4376?OpenDocument
[6] http://www.napster.com
[7] http://gnutella.wego.com/
[8] http://www.groove.net/
[9] http://www.iht.com/articles/15441.htm
[10] http://www.bigbook.com
[11] http://www.mapquest.com
[12] For example, it is not possible to exchange a DB2 system with an Oracle system and have one simply “work” in place of the other regarding the two-phase commit messages and formats. While they both follow the same general protocol, they are not identical.

