[HPTS 2001 Position Paper]

An Efficient and High Concurrency Nonunique Index Management Method

Norihiro Hara

Hitachi Ltd., Business Solution Systems Division

Email:
n-hara@bisd.hitachi.co.jp
Phone:
+81-44-549-1703

Fax:
+81-44-549-1718

1. Introduction

In this paper I present an efficient method to manage B-tree index defined on nonunique attributes. 

B-tree indexes are one of the most important access methods in database. In a nonunique index there are many ROWIDs (-i.e. pointers to data records) in the B-tree belonging to the same attribute value. As mentioned in [GR93], there are some methods to represent these many ROWIDs and the important problems are concurrency and recovery. [MF92] presents high concurrency index management and recovery method on B+-trees. But [MF92] does not mention the nonunique index in detail.

My method provides high concurrency and good space utilization in nonunique indexes by (1) the data structure to manage ROWIDs belonging to a key value, where empty pages are able to be deallocated, (2) data-only locking and index page latching, and (3) recovery based on physiological log data, that completes the incomplete SMO (structure modification operation -i.e., a page split or a page deallocation).

2. Data structure

When a key value corresponds to plenty of ROWIDs, the ROWIDs belonging to the key value are stored and managed in the data structure for each key value attached to the leaf entry. The data structure is two level tree structure. The data structure consists of ROWID list pages and ROWID directory pages. A ROWID list page contains the actual ROWIDs. Each ROWID list page is linked to the right neighbor ROWID list page. A ROWID directory page contains the pointers to the ROWID list pages. Also each ROWID directory page is linked to the right neighbor ROWID directory page. The leftmost ROWID directory page is pointed from the leaf entry, that contains the pointer to the ROWID list page containing the minimum ROWID.

When ROWID is deleted from a ROWID list page and the ROWID list page has no ROWIDs, the empty ROWID list page is deallocated. 

3. Data-only locking

I realized data-only locking. Data operations (-i.e., insert, delete, update and scan operation) acquire locks on record data for logical consistency, does not acquire locks on index data that is index tree, index page or index key value.

To read or modify a page, Index page latches are used for physical consistency at the page level. Usually only one index page is held latched simultaneously. During an SMO, not more than 3 index pages are held latched simultaneously. As soon as the page are unlatched, the blocked operations run to access the page.

4. Recovery

Recovering operations on B-Trees is carried out based on physiological log data. Once an SMO is complete, it is not undone even if the transaction performing it rolls back. When an SMO is in progress at the time of system failure, recovery for a B-tree is done in two phases:

Phase1. Complete the incomplete SMO based on the log records belonging to the SMO.

Phase2. Remove the key or the ROWID that has be inserted.

Even though an SMO is in progress and incomplete, it is not undone. The completion of an incomplete SMO is executed quite similar to an SMO at normal time. 

5. References

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques, Morgan Kaufmann Publishers, Inc., 1993.

[MF92] C. Mohan and Frank Levine. ARIES/IM: An Efficient and High Concurrency Index Management Method using Write-Ahead Logging. Proc. of ACM SIGMOD Conf, pages 371-380, 1992.

