Self-tuning E-services: From Wishful Thinking to Viable Engineering

- Position Paper -
Gerhard Weikum

University of the Saarland, Saarbruecken, Germany

e-mail: weikum@cs.uni-sb.de, homepage: http://www-dbs.cs.uni-sb.de/~weikum/home.htm

1 Understanding the Problem
Automatic tuning of database and transaction processing systems has been an elusive goal for three decades [1]. Despite many interesting approaches and partial solutions to specific issues (see, e.g., [2]), we are still far from a breakthrough. There has been a lot of talk about zero-admin, self-tuning, care-free systems, but in practice good, predictable performance still depends on intensive and expensive feed and care by human system administrators and tuning experts. I claim that this "traditional" approach is viable only in conventional settings such as banking applications with a well-understood workload, fairly predictable, low-variance user behavior, and a limited number of simultaneously active clients. With Web-based e-services [3] such as auctions, brokerage, service outsourcing and e-business supply chains, the problem becomes much more difficult and also more pressing.

1.1 Why is Auto-Tuning More Important Than Ever?
The IT industry today is driven by time to market, and software systems are developed and deployed at an amazing pace. As a result, many Web-based e-services are brittle, frequently exhibit inconvenient outages, and have absolutely unacceptable response times during popular business hours (i.e., load peaks). Exceptions are those well administered sites that are heavily investing in their human support staff, to monitor workload and performance trends, identify potential bottlenecks as early as possible, and take correcting actions such as hardware upgrades or adjustment of tuning knobs (e.g., multiprogramming levels).

Unfortunately, the poor dependability of Web-based e-services appears to be widely "accepted" with the rapid growth of the new-age dot-com industry. For example, I have come across the Web page of a mid-sized hotel chain that explicitly warns users that looking up the availability of a room for a given date would take up to 20 seconds. The Internet research community circumscribes this kind of behavior by the nice but meaningless term "best-effort performance". The bottlenecks include both networking and server-side issues [4], but most often it is congested application and data servers at the e-business or content provider’s site that cause awfully slow response time, the reason being that these servers are poorly configured, tuned, and administered.

Most people in the IT industry are aware of the high cost of unavailability. According to business analysts one minute downtime for an e-business site causes damage (through bad impact on the market position) on the order of $ 100,000 [5]. However, when performance is so poor that potential customers are not willing to wait for a server's reply, these customers will be lost, too, and are unlikely to ever come back to the site [6]. So lack of performance is as expensive as downtime. Furthermore, with the globalization trend customers have much more choices in the Internet age, so there is growing concern about customer loyality and how to attract new customers. Therefore, responsiveness of e-services is of utmost importance.

There is growing awareness of the criticality of performance guarantees, as expressed by Internet performance rating companies such as Keynote or application service providers such as Akamai. These kinds of companies primarily focus on simple long-term metrics such as average respone time over an entire week or month. However, guarantees along these lines do not reflect the performance during peak periods, the most popular business hours when responsiveness matters most. In traditional OLTP, well-tuned systems are geared for peak load for a very good business reason, but Web-based e-services are still far away from this standard.

1.2 Why is Auto-Tuning for Web-based E-Services So Difficult?
There are a number of technical reasons why tuning of a Web-based e-service application is even more challenging than for standard TP systems with "old-style" applications:

· Sophisticated multi-tier architectures: The system architecture of a typical e-service site is more complicated than a traditional TP system. Both are usually three-tier architectures, but a decisive difference in the new world is that the middle-tier (Web) application servers often manage some persistent data in application-oriented object caches. When freshness of the data or bounded staleness matter these sophisticated caching architectures pose additional tuning problems that are not well understood.

· Service federations: Modern e-services offer very rich functionality, which often integrates data and functions from various sites from both within and outside the company. For example, Internet-accessible travel services such as Expedia communicate with wholesalers like Amadeus or Sabre who are themselves full-fledged and autonomous e-service sites. So the performance of one e-service transitively depends on that of other systems. Even within a single company, where business portals aim to provide a unified view onto different information sources and applications, the underlying systems are often operated and administered by different branches, departments, or subsidiaries, and thus at least semi-autonomous. Application service providers (ASPs) face similar problems.

· Workload diversity and variability: In modern business the variety of functions that need to be supported by an e-service site is much higher than in the traditional TP world. Home banking includes not just simple money transfers, but also portfolio analyses, personalized investments recommendations, what-if scenario simulations, and so on. Whenever such highly diverse application functions require some shared data, global tuning becomes a lot more difficult. A second dimension of workload variability lies in the fact that e-services have about a hundred million potential clients from all over the globe. Consequently, there are potentially tremendous fluctuations in the system load, and this can dramatically amplify the factor between average and peak load.

· Long-lived applications and long-range workload dependencies: In traditional OLTP and also in the first-generation e-commerce applications, the focus has been on short-lived interactions that involve say ordering a few books and paying by credit card. In addition, various tricks are used to make most application functions pseudo-stateless (e.g., identifying customers and shopping carts via cookies). This approach simplifies performance tuning as there are no long-term commitments for serving certain requests at user-acceptable speed. The emerging class of business-to-business applications, on the other hand, and also the anticipated next generation of business-to-customer e-services will include long-lived workflows; for example, I may subscribe to some news feed and pay in installments, or some service may run a personalized, automated agent that acts on my behalf in the stock market, in auctions, and so on. These long-lived applications are much more difficult to configure properly and tune, because admitting the start of a new workflow implies long-range commitments by the server to process all follow-on activities at a specified user-acceptable performance level. These levels may vary with different customer classes (premium vs. standard vs. non-paying guests), and the corresponding requirement for "differentiated quality of service" makes the issue even more challenging.
2 Old Attempts and a New One
The difficulty of the problem suggests that there is no easy solution to the long-standing elusive problem of self-tuning systems, especially not for new-style e-services. This is in contrast to some developers' thinking that rules of thumb or even brute-force solutions are good enough for automatic tuning.

Sometimes rules of thumb do indeed work for certain aspects, namely, when sufficiently generic and robust settings for specific tuning knobs can be found without quantitative analysis or merely with a simple back-on-the-envelope calculation. A positive example would be choosing the size of index pages [7]. However, even seemingly simple issues such as choosing an appropriate database cache size for a given workload are so difficult that rules of thumb do not lead to viable solutions. Of course, the five-minute rule dictates a certain minimum cache size based on cost/throughput considerations, but many well-tuned applications use significantly larger caches for better response time (an issue that is not covered by the five-minute rule). Unfortunately, there is no quick-and-easy approach for quantifying the impact of the cache size on the response times of a multi-user workload (this requires advanced math).

Another approach in which many practitioners believe so much that it is even (mis-)conceived as a panacea is the "KIWI method: kill it with iron", that is, upgrade your hardware (more disks, more memory, etc.). Given the low cost of hardware versus the high cost of intellectual cycles, this is indeed a preferable approach, provided that it leads to a viable solution. However, there is a potential pitfall: some tuning problems cannot be solved with hardware upgrades alone or only with outrageously expensive upgrades. For example, an exact-match lookup (say for the availability of a hotel room at a given date) that is processed by a sequential scan can, of course, be sped up by buying more disks, declustering the underlying table, and exploiting I/O parallelism for faster lookup. But in many cases a much smarter and far less expensive solution would be to create an index on the relevant column(s).

When hardware upgrading is the right recipe for a given tuning problem, one needs to be able to calculate how much extra memory, how many additional disks, and other resources are needed to achieve acceptable performance. This in turn requires predicting various performance metrics as a function of the hardware configuration and workload properties. As the relationships between resource settings and response time are inherently nonlinear, and in fact of mathematically quite complex nature, cost-effective use of the KIWI method does require mathematical modeling. In this position paper I outline and advocate an approach toward automatic tuning of advanced e-services that is based on two major principles.

· First, given the necessity of making quantitative statements about the function that relates system configuration and workload properties to the various performance metrics of interest, we are bound to solve mathematical optimization problems. Predictability of system behavior, including performance properties, is key for the ability to provide performance and service quality guarantees. In a context with very high variability of the system load, this calls for stochastic models. I advocate that every piece of software that can be independently installed as a component of an e-service solution should be accompanied by an appropriately parameterized, predictive performance model. I will further elaborate this theme in Section 3.

· Second, I am aware of the fact that mathematical models, and especially stochastic models, may quickly become too complex to be tractable. To avoid this complexity, I suggest radically simplifying the structure of the software by following an approach toward RISC-style components with streamlined functionality and narrow interfaces [ChauWei00]. The high degree of componentization may cause significant overhead so that the absolute performance of say a database manager could easily degrade by a factor of 2 or even higher. However, the gain of this paradigm shift would lie in making the individual components as well as the overall system much more predictable, by simplifying the components, their interactions, and also the corresponding mathematical performance models. This theme is discussed in some more detail in Section 4.

3 The Case for Stochastic Performance Guarantees
The major reason for poor performance during peak hours is that requests suffer long queueing delays at congested application or data servers. What we need in these situations is not just better response times in a general sense, but predictability of and guarantees about the tail of the response time distribution. Ideally, we would wish to give an upper bound for the worst-case response time of client requests, but with the entire world being potential clients of a server and the enormous variability of the server load, the workload can be characterized only statistically at best. Consequently, the server resources needed for true worst-case guarantees would exceed all economically feasible limits. Instead, response time guarantees should be stochastic, for example, specifying that the response time will be 2 seconds or less with probability 95 or 99 percent, thus taking into account both the bursty nature of request arrivals and the response time variability under peak-load conditions. For automatic tuning we need to predict and guarantee such results for given hardware resources. This requires a mathematical model that characterizes the response time distribution of different request classes, or its 95th or 99th percentile, as a function of the hardware resources, tuning knob settings, and certain workload properties. Once we have such a model, we can solve it for the necessary hardware resources and tuning knob settings such that specified response time goals are satisfied. This step may be computationally expensive, but the computations can be carried out offline on separate, inexpensive hardware. Of course, the models need values for their input parameters such as request arrival rates or mean and variance of the requests' number of database page accesses, and so on. These parameter values can be obtained by gathering online statistics from the actual production system. As workloads evolve over time, solving the analytical model should be repeated periodically or even continuously, and the results should be continuously considered for re-adjusting of tuning knobs or alerting the system administrator about necessary hardware upgrades. So the entire approach leads to a feedback control loop.

We have developed such stochastic models as a core asset for configuration and tuning tools in two different settings: 1) for a continuous media server prototype, where the challenge has been to ensure that data fragments of discretized video streams are delivered to a potentially large number of viewers just in time so that the data can be played back smoothly (without "hiccups" or other kinds of glitches) at the clients [8,9], and 2) for a distributed workflow management prototype, where workflow engines must be configured (e.g., replicated at different sites) so that throughput, response time (and also availability goals) are satisfied for both the turnaround time of production workflows and the interaction time of user steps such as worklist manipulation [10,11]. The stochastic models necessary for these special tuning tasks are the result of entire research projects; there is surely no way to develop these models overnight or merely as a "side effect" of building the prototype systems. On the other hand, these research efforts can be viewed as a proof of concept for the feasibility of the advocated stochastic modeling.

It is, of course, well known that the mathematics of stochastic model becomes extremely difficult and sometimes intractable when the models reach a certain complexity, especially when certain standard assumptions such as Poisson arrivals are no longer justified (see, e.g., [12]). In such situations, there are two options:

· We can attempt to analyze a conservative approximation of the real system that serves as an upper bound for the actual performance. For example, for the media server that we built we were faced with a mix of periodic and Poisson arrivals and a fairly sophisticated, dynamic (i.e., state-dependent) scheduling policy. The actual analyis considered a static scheduling policy for tractability, and we carefully reasoned that the dynamic policy does never perform worse. In a similar vein, when a comprehensive mathematical solution is out of reach, we may resort to simulation results, with proper statistical confidence, for submodels and derive higher-level metrics from such submodels using analytic methods.

· Sometimes the best remedy is to simplify the real system itself to make the analysis tractable. This would usually result in some performance losses, but the gain lies in predictability. With simpler building blocks absolute performance can often be boosted by simply scaling up hardware resources (i.e., memory, disks, etc.), while still being able to give strong performance guarantees. For example, we can simplify a news server that delivers both continuous media and conventional (text) documents by not exploiting any resource sharing between the two data types, essentially boiling down to separate servers for each of the two workload classes with disjoint resources. Then, of course, the mathematical analysis would become much simpler and even more accurate. This consideration can be viewed as an instance of the "pick the low hanging fruit" engineering rule of thumb. This is to say that often 90 percent of the solution (and the performance) can be achieved with 10 percent of the intellectual effort and resulting system complexity. Scientists and engineers should not be too proud to exploit this kind of pragmatic approach (notwithstanding the fact that long-term research toward the most general solution should be continued as well).

4 The Case for Predictable RISC-style Components
Database systems and TP systems have become extremely complex and overloaded with features. Furthermore, they are typically packaged as monolithic systems (although they may be componentized internally). As argued in [13], this poses serious manageability problems for application classes like ERP, OLAP and data mining, and also Web-based e-services. Database systems have a very poor gain/pain ratio: they create much pain about having to install, administer, and operate the system, whereas the gain of simplifying the application development by using a full-fledged database system is sometimes questionable in the dot-com application world. Note, for example, that SAP R/3 considers the underlying database system more or less as a mere storage manager [14].

Following role models such as automobiles or aircrafts where dependable engineering appears to be much more advanced, I suggest a radical departure along the lines of the RISC paradigm shift in computer architecture back in the eighties. I believe that the key to understanding such complex artifacts as computers (i.e., the hardware) or aircrafts and making their construction and deployment manageable (with good gain/pain ratio) lies in three principles: 1) these artifacts are highly componentized, 2) the components have limited and relatively simple (i.e., “RISC-style”) functionality so that the behavior of a component is predictable (including its timing behavior, i.e., performance properties), and 3) the interfaces of the components are designed as narrow as possible so that the interaction complexity between components is kept to a minimum. These principles would, for example, suggest replacing the ubiquitous SQL language by a suite of much simpler APIs. To a limited extent, research and industry is pursueing this approach already, e.g., in the form of light-weight or specialized data management engines such as SleepyCat or TimesTen, but this is not exactly the mainstream in the database software industry. Of course, components in this system philosophy would be relatively large-grained rather than fine-grained objects; for example, a storage manager (including concurrency control and recovery), a select-project-join engine, or a text document manager would be components, but a universal database system would be against the spirit of this approach. Also, all components should apply Occam’s razor to their interfaces as well as their internals, and should avoid features that are rarely used or implementation techniques that improve performance only marginally or only under special circumstances (e.g., no hash structures as B-tree indexes are good enough in most situations).

In the context of self-tuning e-services, the key point of components is their predictability that falls out from their (relative) simplicity. The simpler an interface and the underlying internals are, the fewer tuning knobs need to be exported and the easier it becomes to mathematically analyze and predict the component’s performance. For example, query result size and runtime estimations for a select-project-join engine becomes more tractable if the complexity of the search predicates is limited (e.g., disallows user-defined functions or arbitrary multidimensional predicates, which are rarely needed in e-business applications). For OLAP or GIS applications, on the other hand, we could build a specialized multidimensional query engine and construct a separate performance prediction model for this engine, which should again be much more tractable than for a universal database system. The (stochastic) performance model for a component should be developed together with the component software, which is much easier than doing performance modeling in retrospect. Such a performance model would be parameterized, as the component’s performance depends on the underlying hardware configuration and workload properties. When the component is bound to a specific hardware and application environment (with a known workload profile), the performance model would become a performance (or service quality) contract by which certain guarantees are given about metrics of interest (e.g., the 95th percentile of the response time distribution for a specific class of user requests).

Of course, the highly componentized approach to data management and e-service software is viable only if multiple components can be composed into value-added services without re-introducing a poor gain/pain ratio. Again, the RISC-style simplicity of component interfaces and the cross-component interactions would be the key asset for low-effort composability. This argument includes the performance contracts: the value-added service should in turn provide a performance model and contract that are derived from the models of the underlying components. Of course, this line of thinking about system architecture bears the risk that value-added services exhibit very high overhead for component interaction (e.g., for copying data across interfaces). However, this would be only constant overhead, say a slow-down factor of 2. We can make up for this performance loss by proportionally adding (inexpensive) hardware resources; this is a case where the KIWI method makes perfect sense. The true gain would lie in the fact that such systems and e-ervices composed from RISC-style components would have predictable performance, so that automatic tuning could finally move from wishful thinking to viable engineering.

References

[1] P. Bernstein, M.L. Brodie, S. Ceri, D.J. DeWitt, M.J. Franklin, H. Garcia-Molina, J. Gray, G. Held, J.M. Hellerstein, H.V. Jagadish, M. Lesk, D. Maier, J.F. Naughton, H. Pirahesh, M. Stonebraker, J.D. Ullman: The Asilomar Report on Database Research, ACM SIGMOD Record Vol.27 No.4, Decemer 1998

[2] S. Chaudhuri (Editor): IEEE CS Data Engineering Bulletin, Special Issue on Self-Tuning Databases and Application Tuning, Vol.22 No.2, June 1999, http://www.research.microsoft.com/research/db/debull/issues-list.htm

[3] G. Weikum (Editor): IEEE CS Data Engineering Bulletin, Special Issue on Infrastructure for Advanced E-Services, Vol.24 No.1, March 2001, http://www.research.microsoft.com/research/db/debull/issues-list.htm

[4] C. Loosley, R.L. Gimarc, A.C. Spellmann: E-Commerce Response Time: a Reference Model, Keynote Systems Inc., 2000,

http://www.keynote.com/services/assets/applets/E-Commerce_Response_Time_CMG_2000__Chris_.pdf

[5] Oracle8i with Oracle Fail Safe 3.0, White Paper, Oracle Corp., 2000,

http://www.oracle.com/tech/nt/failsafe/pdf/ofs30db.pdf

[6] N. Bhatti, A. Bouch, A. Kuchinsky: Integrating User-Perceived Quality into Web Server Design, WWW Conference, Amsterdam, 2000

[7] J. Gray, G. Graefe: The Five-Minutes Rule Ten Years Later, and Other Computer Storage Rules of Thumb, ACM SIGMOD Record Vol.26 No.4, 1997

[8] G. Nerjes, P. Muth, G. Weikum: Stochastic Service Guarantees for Continuous Data on Multi-Zone Disks, ACM Symposium on Principles of Database Systems (PODS), Tucson, 1997

[9] G. Nerjes: A Multimedia Information Server with Mixed Workload Scheduling, International Conference on Data Engineering, Demo Program, San Diego, 2000

[10] M. Gillmann, J. Weissenfels, G. Weikum, A. Kraiss: Performance and Availability Assessment for the Configuration of Distributed Workflow Management Systems, International Conference on Extending Database Technology (EDBT), Constance, Germany, 2000

[11] M. Gillmann, J. Weissenfels, G. Shegalov, G. Weikum, W. Wonner: A Goal-driven Auto-Configuration Tool for the Distributed Workflow Management System Mentor-lite, ACM SIGMOD Conference, Demo Program, Dallas, 2000

[12] G. Haring, C. Lindemann, M. Reiser (Editors): Performance Evaluation: Origins and Directions, Springer, 2000

[13] S. Chaudhuri, G. Weikum: Rethinking Database System Architecture - Towards a Self-tuning RISC-style Database System, International Conference on Very Large Data Bases (VLDB), Cairo, 2000

[14] R. Munz, Usage Scenarios of DBMS, Keynote Talk, International Conference on Very Large Data Bases (VLDB), Edinburgh, UK, 1999, http://www.dcs.napier.ac.uk/~vldb99/IndustrialSpeakerSlides/SAPVLDB.pdf

PAGE
1

