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Abstract.  This paper presents efficient strategies for sorting large sequences of fixed-length keys (and values) using GPGPU 

stream processors.  Compared to the state-of-the-art, our radix sorting methods exhibit speedup of at least 2x for all 

generations of NVIDIA GPGPUs, and up to 3.7x for current GT200-based models. Our implementations demonstrate sorting 

rates of 482 million key-value pairs per second, and 550 million keys per second (32-bit).  For this domain of sorting 

problems, we believe our sorting primitive to be the fastest available for any fully-programmable microarchitecture. 

These results motivate a different breed of parallel primitives for GPGPU stream architectures that can better exploit the 

memory and computational resources while maintaining the flexibility of a reusable component.  Our sorting performance is 

derived from a parallel scan stream primitive that has been generalized in two ways: (1) with local interfaces for 

producer/consumer operations (visiting logic), and (2) with interfaces for performing multiple related, concurrent prefix scans 

(multi-scan).    

As part of this work, we demonstrate a method for encoding multiple compaction problems into a single, composite parallel 

scan.  This technique yields a 2.5x speedup over bitonic sorting networks for small problem instances, i.e., sequences that can 

be entirely sorted within the shared memory local to a single GPU core. 

 

1 Introduction 

The transformation of the fixed-function graphics processing unit into a fully-programmable, high-bandwidth coprocessor 

(GPGPU) has yielded a wealth of data-parallel performance opportunities.  As a new and disruptive genre of 

microarchitecture, it is important to establish efficient computational primitives for the corresponding programming model.  

Software primitives promote software flexibility via abstraction and reuse, and much effort has been spent investigating 

efficient primitives for GPGPU stream architectures [1].   

As a reusable primitive, performance concerns of speed and efficiency are top priorities for parallel sorting routines.  Sorting 

techniques that involve partitioning or merging strategies are particularly amenable for GPGPU architectures: they are highly 

parallelizable and the computational granularity of concurrent tasks is miniscule.  This paper is concerned with the problem 

of sorting large sequences of elements, specifically sequences comprised of hundreds-of-thousands or millions of fixed-

length, numerical keys.  We consider two varieties of this problem: sequences comprised (a) 32-bit keys paired with 32-bit 

satellite values; and (b) 32-bit keys only.  Our solution strategies, however, can be generalized for keys and values of other 

sizes. 

The need to rank and order data is pervasive.  As an algorithmic primitive, sorting facilitates many problems including binary 

search, finding the closest pair, determining element uniqueness, finding the kth largest element, and identifying outliers [2,3].  

Sorting routines are germane to many GPU rendering applications, including shadow and transparency modeling [4], Reyes 

rendering [5], volume rendering via ray-casting [6], particle rendering and animation [7,8], ray tracing [9], and texture 

compression [10].  Sorting serves as a procedural step within the construction of KD-trees [11] and bounding volume 

hierarchies [12,13], both of which are useful data structures for ray tracing, collision detection, visibility culling, photon 

mapping, point cloud modeling, particle-based fluid simulation, etc.  GPGPU sorting has also found use within parallel 

hashing [14], database acceleration [15,16], data mining [17], and game engine AI [18]. 
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1.1 Contributions 

We present the design of our strategy for radix sorting on GPGPU stream architectures, demonstrating that our approach is 

significantly faster than previously published techniques for sorting large sequences of fixed-size numerical keys.  We 

consider the GPGPU sorting algorithms described by Satish et al. [19] (and implemented in the CUDPP data parallel 

primitives library [20]) to be representative of the current state-of-the-art.  Our work demonstrates factors of speedup of at 

least 2x for all fully-programmable generations of NVIDIA GPUs, and up to 3.7x for current generation models.  In addition, 

our local sorting strategies exhibit up to 2.5x speedup over bitonic networks for small problem instances that can be entirely 

sorted within the shared memory of a single GPU core (e.g., 128-512 elements). 

Revisiting previous sorting comparisons in the literature between many-core CPU and GPU architectures [21], our speedups 

show older NVIDIA G80-based GPUs to outperform Intel Core2 quad-core processors.  We also demonstrate the NVIDIA 

GT200-based GPUs to outperform cycle-accurate sorting simulations of the unreleased Intel 32-core Larrabee platform by as 

much as 42%.  The Larrabee architecture provides write-coherent caches and alternative styles of synchronization in an effort 

to provider higher performance for cooperative problems such as sorting [22].   

We refer to our approach as a strategy [23] because it is a flexible hybrid composition of several different algorithms.  We 

use different algorithms for composing different phases of computation, where each phase is intended to exploit a different 

memory space or aspect of computation.  Because the number of steps needed for each phase is adjustable, our solution is 

flexible in terms of support for different SIMD widths, shared memory sizes, and can be mated to optimal patterns of device 

memory transactions.  

GPGPU applications strive to maximally utilize both computational and I/O resources; inefficient usage or underutilization of 

either is often indicative of suboptimal problem decomposition.  Our speedup over the CUDPP implementation is due to our 

improved usage of both: we require 38% fewer bytes to be moved through the global memory subsystem, and a 64% 

reduction in the number of thread-cycles needed for computation.   

There are two contributing factors that have enabled our efficient use of the hardware.  The first is our prior work on the 

development of efficient, memory-bound parallel prefix scan routines [24].  Prefix scan is a useful primitive for parallel 

shared-memory architectures: it allows processing elements to dynamically and cooperatively determine the appropriate 

memory location(s) into which their output data can be placed.  The radix sorting method is a perfect example: keys can be 

processed in a data-parallel fashion for a given digit-place, but cooperation is needed among processing elements so that each 

may determine the appropriate destinations for relocating its keys. 

The second factor is that we apply an alternative pattern of program composition.  Our key insight is that performance 

depends not only upon the implementation of a given primitive, but its usage as well.   In typical design, stream primitives 

are invoked by the host program as black-box subroutines.  The stream kernel (or short sequence of kernels) facilitates a 

natural abstraction boundary: kernel steps in a stream are often functionally orthogonal, exhibiting a low degree of coupling 

with other routines.  However, we demonstrate that greater overall system utilization can be achieved by applying a visitor 

pattern [23] of task composition when reusable primitives are extremely memory-bound.  The result is a form of semi-

explicit kernel fusion: orthogonal steps are coalesced using an additional pair of abstraction interfaces in which the primitive 

invokes (i.e., “visits”) application-specific logic for (a) input-generation and (b) post-processing behavior.  For example, our 

radix sorting design combines the prefix scan primitive with binning and scatter routines: binning decodes the particular 

numeral represented within a given key and digit place, and scatter relocates keys (and values) based upon the ordering 

results computed by scan. 

This pattern provides an elegant mechanism for increasing the arithmetic intensity of memory-bound reduction and scan 

primitives.  The overall number of memory transactions needed by the application is dramatically reduced because we 

obviate the need to move intermediate state (e.g., the input/output sequences for scan) through global device memory. The 
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elimination of load/store instructions also increases the 

computational efficiency, further allowing our pattern to 

exploit those resources. 

1.2 Organization of the Report 

Section 2 presents a brief, relevant overview of GPGPU 

stream architectures.  Section 3 reviews the radix sorting 

method.  Section 4 describes the design of our strategy, 

providing an overview of our parallel scan primitive and 

the details for how we extend it to provide stable digit-

sorting functionality.  Section 5 presents our performance 

evaluations and Section 6 concludes with a discussion of 

how our work fits into the landscape of GPGPU sorting 

methods. 

2 Parallel Computation on the GPGPU 

2.1 Stream Machine and Programming Models 

The GPGPU is capable of efficiently executing large quantities of concurrent, ultra-fine-grained tasks.  It is often classified as 

SPMD (single program, multiple data) in that many hardware-scheduled execution contexts, or threads, run copies of the 

same imperative program, or kernel.   

The typical GPU processor organization entails a collection of cores (stream multiprocessors, or SMs), each of which is 

comprised of homogeneous processing elements (i.e., ALUs).  These SM cores employ local SIMD (single instruction, 

multiple data) techniques in which a single instruction stream is executed by a fixed-size grouping of threads called a warp.  

Similar to symmetric multithreading (SMT) techniques, each SM contains only enough ALUs to actively execute one or two 

warps, yet maintains and schedules amongst the execution contexts of many warps.  This translates into tens of warp contexts 

per core, and tens-of-thousands of thread contexts per GPU processor. 

Language-level constructs for thread-grouping are provided to facilitate logical problem decomposition in a manner that is 

also convenient for mapping blocks of threads onto physical SM cores.  A two-level grouping hierarchy is often used for 

programming a single device: a CTA (cooperative thread array) of individual threads that share a memory space local to an 

SM core, and a grid of homogeneous CTAs that encapsulates all of the threads for a given kernel. 

Threads must explicitly move data from one memory space to another.  Cooperation is based on the bulk-synchronous model 

[25]: memory coherence is achieved through the programmatic use of synchronization barriers.  Different barriers exist for 

different spaces: CTA synchronization instructions exist for the coherence of local shared memory, and off-chip global 

memory is made consistent at the boundaries between serial kernel invocations.  An important consequence is that 

cooperation amongst SM cores requires the invocation of multiple kernel instances.  The host orchestrates a stream of global 

data flow by repeatedly invoking new kernel instances, each of which is initially presented with a consistent view of the 

results from the previous.  

2.2 Resource Utilization 

It is often less desirable for a given problem to be memory-bound (or, more generally, I/O-bound) than compute-bound.  

Historically, the trend of growing disparity between processor throughput and I/O bandwidth for successive microprocessor 

generations has meant that I/O-bound implementations would benefit substantially less from the simple passage of time.   

There are two approaches for rebalancing I/O-bound workloads in an effort to obtain better overall system utilization, i.e., for 

improving arithmetic intensity.  The first is to increase the amount of local computation in such a way that fewer intermediate 

results need to be communicated off-chip.  Many algorithmic strategies are capable of a variable granularity of computation, 

 

Figure 1.  A typical GPGPU organization comprised of 30 
SM cores, each having 8 SIMD ALUs and a local shared 

memory space.  Globally-visible DRAM memory is off-

chip. 
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i.e., they can trade redundant computation for fewer I/O 

operations.  For example, increasing the number of bits per radix-

digit decreases the total number of digit places that need iterating 

over.  Granularity adjustment has two challenges: (1) the 

operational details are very application-specific; and (2) linear 

decreases in I/O often require super-linear increases in dynamic 

instruction counts and local storage requirements.  In general, we 

see the latter reflected in the “power law of cache misses” [26], 

which suggests that the influence of cache size (e.g., local 

storage) upon miss rate (e.g., off-chip memory accesses) follows 

a power curve in which squaring the cache size typically results 

in halving the cache misses. 

The second approach is to co-locate sequential steps in the stream pipeline within a single kernel, as illustrated in Figure 2.  

When data-parallel steps can be combined, the intermediate results can be passed from one step to the next in local registers 

or shared memory instead of through global, off-chip memory.  Data-producing steps are often data-parallel and can be 

relocated inside the primitive’s first kernel, replacing that kernel’s original gather operation.  The same can be done for a 

consumer step, i.e., it can replace the scatter logic within the scan primitive’s last kernel.  Many cooperative primitives have a 

global cooperation requirement, requiring multiple kernel invocations by the host.  As such, the host must actually drive the 

primitive’s kernels which can then in turn “visit” the pre/post steps.   

The over-threaded nature of the GPGPU architecture provides predictable and usable “bubbles of opportunity” for extra 

computation within I/O-bound primitives.    If the computational overhead of the visiting logic can fit within the envelope of 

this bubble, this work can be performed at essentially zero-cost.  If the resulting kernel is still memory-bound, we can ratchet 

up the application-specific arithmetic intensity, if any.  This technique is particularly effective for improving the overall 

system utilization of streams comprised of alternating memory- and compute-bound kernels. 

2.3 Analysis and Modeling 

One effect of GPGPU latency-hiding is that device saturation occurs when the number of schedulable thread contexts is much 

greater than the number of ALUs on the GPU die.  This causes the system to appear to scale as if it has many more ALUs 

than it does, i.e., an “effective” processor count for saturated conditions.  Unfortunately it can be problematic to model 

performance using effective processor count and task durations, particularly in terms of abstractions afforded by the 

programming model (e.g., threads, warps, CTAs, etc.).   

As an alternative, we can model performance using the aggregate device throughputs for computation and memory.  When 

saturated, GPU cores typically exist in either a compute-bound or a memory-bound state for the duration of a stream kernel: 

over-threading is effective at averaging out the particular phases of behavior any given thread is experiencing.  Compute-

bound kernels proceed at the device’s aggregate number of thread-cycles per second (δcompute), and memory-bound kernels 

proceed at the bandwidth of the memory subsystem (δmem).  By modeling the aggregate computational and memory 

workloads in terms of cycles and bytes, we can use these throughputs to obtain the corresponding time overheads.  Because 

these GPU workloads are effectively divorced, the overall time overhead will be the larger of the two.  We illustrate this with 

a model of reduction, a subcomponent of our scan primitive.  

GPGPUs have a much higher ratio of global communication cost to processor cores than traditional massively-parallel 

systems.  The relative cost of moving data through global memory makes it undesirable for tree-based cooperation between 

SM cores to be comprised of more than two levels.  Consider parallel reduction over a very large network of scalar 

processors in which the set of processors consume O(n/p) time to generate per-processor sums in parallel, and then O(log2p) 

time to reduce them in a binary computation tree [27].  For some device-specific task-duration constants c1 and c2, we would 

model saturated runtime as: 

 

Figure 2.  Coalescing separate producer and consumer 
logic (left) into the kernels of a stream primitive (right).   
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Our  GPGPU version is only comprised of two kernels: (1) a saturating bottom-level kernel comprised of C CTAs that each 

reduces n/C elements; and (2) an unsaturated top-level kernel in which a single CTA reduces the C intermediate results [24].  

For inputs at scale, we can dismiss the overhead of the insignificant top-level kernel and drop the log2p component from the 

model above. Assuming conversion constants c3 to model reduction operations in terms of cycles and c4 to model words in 

terms of bytes, we therefore model saturated GPGPU runtime as follows: 

  

3 Parallel Radix Sorting 

The radix sorting method relies upon a positional 

representation for keys, i.e., each key is comprised of an 

ordered sequence of symbols (i.e., digits) specified from least-

significant to most-significant.  For a specific total ordering of 

the symbolic alphabet and a given input sequence of keys, the 

radix sorting method produces a lexicographic ordering of 

those keys.  The process works by iterating over the digit-

places from least-significant to most-significant.  For each 

digit-place, the method performs a stable distribution sort of 

the keys based upon their digit at that digit-place.  Given an n-

element sequence of k-bit keys and a radix r = 2d, a radix sort 

of these keys will require k/d passes of a distribution sort over 

all n keys.  The asymptotic work complexity of the distribution sort is O(n) because each input item needs comparing with 

only a fixed number of radix digits.  With a fixed number of digit-places, the entire sorting process is also O(n). 

The distribution sort is the fundamental component of the radix sorting method.  In a data-parallel, shared-memory 

decomposition, each logical processor gathers its key, decodes the specific digit at the given digit-place, and then must 

cooperate with other processors to determine where the key should be relocated.  The relocation offset will be the key’s 

global rank, i.e., the number of keys with “lower” digits at that digit place plus the number of keys having the same digit, yet 

occurring earlier in the sequence.   

The ranking process can be constructed from one or more parallel prefix scans.  In its simplest form, this can be done using a 

binary split primitive [28] comprised of two prefix scans over two n-element binary flag vectors: the first initialized with 1s 

for keys whose digit was 0, the second to 1s for keys whose digit was 1.  The two scan operations are dependent: the scan of 

the 1s vector can be seeded with the number of zeros from the 0s scan.2  After the scans, the ith element in the appropriate 

compacted flag vector will indicate the relocation offset for the ith key.  Alternatively, the two vectors can be concatenated 

and processed by one large scan as shown in Figure 3.     

A simple, naïve GPGPU distribution sort implementation could be constructed from a black-box parallel scan primitive 

sandwiched between separate binning and scatter kernels.  The binning kernel would be used to create a concatenated flag 

vector of rn elements in global memory.  After scanning, the scatter kernel would redistribute the keys (and values) according 

to the compaction results.  This approach suffers from an excessive O(rn) memory workload that will set a lower bound on 

the achievable performance: it has a linear coefficient that is exponential in terms of the number of radix digit bits d.  As a 

                                                        

2
 An optimization for radix r = 2 is to obviate the 1s scan: the destination for a 1s key can be determined by adding the total number of 0 keys to the 

processor-rank and then subtracting the result from compacted 0s vector [30]. 

 

Figure 3.  Using scan to perform a radix r = 2 distribution 

sort on the first digit-place of an input sequence.   

Flag vectors

Key sequence

0 0 0 0 0 0 0 01 1 1 11 11 1

1110 1010 1100 10000011 0111 0101 0001

Compacted flag vectors
(relocation offsets)

1 2 4 4 4 5 6 64 5 6 71 20 3

0s 1s

0s 1s

0 2 4 51 3 6 7

1 3 6 72 40 5 1 3 6 72 40 5

1 3 6 72 40 5 1 3 6 72 40 5
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Step Kernel Purpose Read Workload Write Workload 

1 local digit-sort Maximize coherence n keys (+ n values) n keys (+ n values) 

2 Histogram Create histograms n keys nr/b counts 

3 bottom-level reduce 
Scan histograms  
(scan primitive) 

nr/b counts (insignificant constant) 

4 top-level scan (insignificant constant) (insignificant constant) 

5 bottom-level scan nr/b counts + (insignificant constant) nr/b offsets 

6 Scatter Distribute keys nr/b offsets + n keys (+ n values) n keys (+ n values) 

     
   Total Memory Workload: (k/d)(n)(5r/b + 7) keys only 

(k/d)(n)(5r/b + 9) with values 

 

Figure 4.  GPGPU stream representative of the Satish et al. method for distribution sorting with d-bit radix digits, 
radix r = 2d, local block size of b keys, and an n-element input sequence of k-bit keys. 

 

consequence of this dependency, the overall memory workload for k/d passes would be minimized when the number of radix 

digit bits d = 1, providing little flexibility for adjusting the granularity of computation. 

As an alternative, many parallel implementations use a histogram-based strategy [29,30].  For saturating problems, the 

number of parallel processors is typically smaller than the input sequence size, making it natural to distribute the sequence 

amongst processors in blocks of b keys.  Using local resources, each processor can compute an r-element histogram of digit-

counts. By only sharing these histograms, the global storage requirements are reduced by a factor of b.  A parallel scan of 

these histograms provides each processor with the base digit-offsets for its block of keys.  These offsets can then be applied 

to the local key rankings within the block to distribute the keys.  

Prior GPGPU radix sort implementations use this approach, treating each CTA as a logical processor operating over a block 

of b keys [31,32,19].  Of these, we consider the radix sort implementation described by Satish et al. to be representative of 

the current state-of-the-art.  Their procedure is depicted in Figure 4.  Although the overall memory workload still has a linear 

coefficient that is exponential in terms of the number of radix digit bits d, it is significantly reduced by common block-sizes b 

of 128-1024 keys.  Because the number of logical processors grows with problem size, the block-size factor elicits a bathtub 

effect in which there exists an optimal d to produce a minimal memory overhead for a given block size.  (E.g., a radix digit 

size d = 8 would provide the minimal memory overhead for their block size b = 512 when sorting 32-bit keys and values.)  

As a point of comparison with our approach, they use d = 4 bits, requiring the memory subsystem to process 73.3n words for 

an entire sort of 32-bit keys and values.    

We note that their design incorporates a kernel that locally sorts individual blocks of keys by their digits at a specific digit-

place.  This helps to maximize the coherence of the writes to global memory during the scatter phase.  Stream processors 

typically obtain maximum bandwidth by coalescing concurrent memory accesses, i.e. the references made by a SIMD warp 

that fall within a contiguous memory segment can be combined into one memory transaction.  Although computationally 

expensive, this localized sorting creates ordered subsequences of keys can then be contiguously and efficiently scattered to 

global memory in a subsequent kernel.  

4 Efficient Radix Sorting Strategies 

The primary design goal of our radix sorting strategy is to reduce the aggregate memory workload.  In addition to being a 

lower-bound for overall performance, the size of the memory workload also greatly contributes to the size of the 

computational workload.  In this section, we describe how we generalize prefix scan to implement a distribution sort with an 

asymptotically minimal number of intermediate values that must be exchanged through global device memory.  More 

specifically, we do this by adding two capabilities to the stream kernels that comprise the parallel scan primitive: visiting 

logic and multi-scan.  We use visiting logic to perform binning and scatter tasks, and multi-scan to compute the prefix sums 

of radix r flag vectors in parallel.  Both features serve to increase the arithmetic intensity of our memory-bound primitive. 
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4.1 Meta-strategy 

In prior work, we developed several efficient GPGPU scan strategies that use a two-level reduce-then-scan meta-strategy for 

problem decomposition across SM cores [24].  This meta-strategy is composed of three stream kernels: a bottom-level 

reduction, a top-level scan, and a bottom-level scan.  Instead of allocating a unique thread for every input element, our 

bottom-level kernels dispatch a fixed number C of CTAs in which threads are re-used to process the input sequence in 

successive blocks of b elements each.  Reduction and scan dependencies between blocks are carried in thread-private 

registers or local shared memory.  Figure 5 shows how these kernels have been supplemented with visiting logic and multi-

scan capability.   

The bottom-level reduction kernel reduces n inputs into rC partial reductions.  Our reduction threads employ a loop-raking 

strategy [33] in which each thread accumulates values in private registers.  The standard gather functionality has been 

replaced with binning logic.  When threads in the binning logic read in a block of keys, each decodes the digits at that digit-

place for its keys and returns the corresponding digit-counts for each of the r possible digits to the kernel’s accumulation 

logic.  After processing their last block, the threads within each CTA perform cooperative reductions in which their 

accumulated values are reduced into r partial reductions and written out to global device memory, similar to Harris et al. [34].   

The single-CTA top-level scan has been generalized to scan a concatenation of rC partial reductions.  For radix sorting, a 

single scan is performed over these sets of partial reductions.  The top-level scan is capable of operating in a segmented-scan 

mode for multi-scan scenarios that produce independent sequences of input. 

 

Figure 5.  GPGPU stream sequence of kernel invocations for a distribution sort with radix r = 2 (two scans).  Time 
flows downwards.  This example depicts bottom-level kernel grids comprised of C = 4 CTAs, each CTA processing 

blocks of b = 8 values in serial fashion.  Data-flows in light-blue indicate live values pertaining to the 0s scan, dark-blue 
for the 1s scan.   
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Step Kernel Purpose Read Workload Write Workload 

1 bottom-level reduce 
Create flags, 

compact flags, 
scatter keys 

n keys (insignificant constant) 

2 top-level scan (insignificant constant) (insignificant constant) 

3 bottom-level scan n keys (+ n values) + 
(insignificant constant) 

n keys (+ n values) 

     
   Total Memory Workload: (k/d)(3n) keys only 

(k/d)(5n) with values 

 

Figure 6.  Our distribution sorting GPGPU stream constructed from a parallel multi-scan primitive and visiting binning and 
scatter kernels with d-bit radix digits, radix r = 2d, and an n-element input sequence of k-bit keys. 

 

In the bottom-level scan kernel, CTAs enact the distribution sort for their portions of the input sequence, seeded with the 

prefix sums provided by the top-level scan.  Each CTA serially reads consecutive blocks of b elements, re-bins them into r 

local flag vectors, and scans these vectors using a local scan strategy. The scatter logic is then presented with the r prefix 

sums specific to each key in order to redistribute the keys.  It is also responsible for loading and similarly redistributing any 

satellite values.  The aggregate counts for each digit are serially curried into the next b-sized block. 

The memory workloads for our distribution-sorting scan primitive are depicted in Figure 6.  Only a constant number of 

memory accesses are used for the storage of intermediate results, and the overall workload no longer has a linear coefficient 

that is exponential in terms of the number of radix digit bits d.  This implies that memory workload will monotonically 

decrease with increasing d, positioning our strategy to take advantage of any additional computational power that may allow 

us to increase d in the future.  Our strategy can operate with a radix digit size d ≤ 4 bits on current NVIDIA GPUs before 

exponentially-growing demands on local storage prevent us from saturating the device.  This configuration only requires the 

memory subsystem to process 40n words for an entire sort of 32-bit keys and values. 

4.2 Local Strategy 

While the details of the reduction kernel are fairly straightforward, the local operation of our scan kernels warrants some 

discussion.  Of our prior scan primitives, the SRTS variant is the most efficient at processing blocks of contiguous elements 

[24].  Figure 7 shows how we have augmented the bottom-level SRTS scan kernel with visiting logic to perform binning and 

scatter tasks, and with multi-scan to compute the local prefix sums of radix r flag vectors in parallel.  The figure is illustrated 

from the point of a single CTA processing a particular block of input values.  Threads within the binning logic collectively 

read b keys, decode them according to the current digit-place, and create the private-register equivalent of r flag vectors of b 

elements each.  The scan logic is replicated r-times, ultimately producing r vectors of b prefix sums each: one for each of the 

r possible digits.   

The scan logic itself is a flexible hierarchy of reduce-then-scan strategies composed of three phases of upsweep/downsweep 

operation: (1) thread-independent processing in registers, shown in blue; (2) inter-warp cooperation, shown in orange; and 

(3) intra-warp cooperation, shown in red.  The thread-independent phase serves to transition the problem from the block size 

b into a smaller version that will fit into shared memory and back again.  This provides flexibility in terms of facilitating 

different memory transaction sizes (e.g., 1/2/4-element load/stores) without impacting the size of the shared-memory 

allocation.  In the inter-warp cooperation phase, a single warp serially reduces and scans though the partial reductions placed 

in shared memory by the other warps in a raking manner similar to [35], transitioning the problem size into one that can be 

cooperatively processed by a single warp and back again.  This provides flexibility in terms of facilitating shared memory 

allocations of different sizes, supporting alternative SIMD warp sizes, and accommodating arbitrary numbers of warps per 

CTA.  For a given warp-size of w threads, the intra-warp phase implements log2w steps of a Kogge-Stone scan [36] in a 

synchronization-free SIMD fashion as per [37].  Running totals from the previous block are carried into the SIMD warpscan, 

incorporated into the prefix sums of the current block’s elements, and new running totals are carried out for the next block, 

all in local shared memory. 
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Figure 7.  The operation of a generalized SRTS multi-scan CTA that incorporates visiting logic for binning and scatter 
operations.  This figure depicts computation and time flowing downward for an input block size of b = 32 keys, a radix r = 
4 digits, and a warp-size w = 4 threads.  The five SRTS stages are labeled in light blue, the visiting stages in yellow.  Circles 
indicate the assignment of a given thread ti to a binary associative task.  Flag vector encoding is not shown. The blue thread-
independent processing phase is shown to accommodate 2-element (128B) loads/stores. 
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The scatter operation is provided with the block of b keys, the r vectors of local prefix sums, the local digit totals, and the 

incoming running digit totals.  Although each scatter thread could use this information to distribute the same keys that it 

obtained during binning, doing so would result in poor write coherence.  Instead we use the local prefix sums to scatter them 

to local shared memory where consecutive threads can pick up consecutive keys and then scatter them to global device 

memory with a minimal number of memory transactions.  In order to do this, the scatter operation computes the dependencies 

among prefix sum vectors with a SIMD warpscan of the local digit totals.   

Although our two-phase scatter procedure is fairly expensive in terms of dynamic instruction overhead and unavoidable bank 

conflicts, it is much more efficient than the sorting phase implemented by [19].  Their sorting phase performs d iterations of 

binary-split, exchanging keys (and values) d times within shared memory, whereas our approach only exchanges them once.  

4.3 Multi-scan Optimization and Performance Modeling  

For the purposes of performing a distribution sort, the visiting binning logic returns a set of compaction problems (i.e., prefix 

scans of binary-valued input elements) to the multi-scan component.  In this subsection, we describe our method for 

increasing the efficiency of these compactions.  Our binning and scatter operations employ a method of flag vector encoding 

that takes advantage of the otherwise unused high-order bits of the flag words.  By breaking a b = 512 element block into two 

sets of 256-element multi-scans, the scatter logic can encode up to four digit flags within a single 32-bit word.  The bit-wise 

parallelism of 32-bit addition allows us to effectively process four radix digits with a single composite scan.  For example, a 

CTA configured to process a 4-bit digit place can effectively compact all sixteen local digit vectors with only four scan 

operations.  

To evaluate this method, we can decompose the computational overhead of the bottom-level scan kernel in terms of the 

following tasks: data-movement to/from global memory; digit inspection and encoding of flag vectors in shared memory; 

shared-memory scanning; decoding local rank from shared memory; and locally exchanging keys and values prior to scatter.  

For a given key-value pair, each task will incur a fixed cost α in terms of thread-instructions.  The flag-encoding and 

scanning operations will also incur a per-pair cost of β instructions per composite scan.  We model the computational 

workload of the bottom-level scan kernel in terms of thread-instructions as follows: 

 

For the NVIDIA GT200 architecture, we have empirically determined instrsscankernel(n,r) = n (51.4 + r).  The instruction costs 

per pair are: αmem = 6.3; αencflags = 5.5; αscan = 10.7; αdecflags = 13.9; and  αexchange = 14.7.  The instruction costs per pair per 

composite scan are: βencflags = 2.6; and βscan = 1.4.  The result is that our encoding reduces the incremental overhead of r to 1.0 

instruction per key. 

As an alternative, a single-instruction, native implementation of the 32-bit popc() intrinsic has been promoted as a mechanism 

for improving the efficiency of parallel compaction [38].  The popc() intrinsic is a bitwise operation that returns the number 

of bits set in a given word.  A local compaction strategy using popc() would likely require at least four instructions per 

element per radix digit: a ballot() instruction to cooperatively obtain a 32-bit word with the appropriate bits set, a mask to 

remove the higher order bits, a popc() to extract the prefix sum, and one or more instructions to handle prefix dependencies 

between multiple  popc()-words when compacting sequences of more than 32 elements.  Because of our lower per-scan costs, 

our strategy will be more efficient when r ≥ 8 (two or more composite scans).  

5 Evaluation 

This section presents the performance of our SRTS-based radix sorting strategy along with the CudPP v1.1 implementation 

as a reference for comparison.  Our primary test environment consisted of a Linux platform with an Intel i7 quad-core CPU 

and an NVIDIA GTX-285 GPU.  Our analyses are derived from measurements taken over a suite of ~1,500 randomly-sized 

input sequences, each initialized with 32-bit keys and values sampled from a uniformly random distribution.  Our 
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measurements for elapsed time, dynamic instruction count, warp serializations, memory transactions, etc., are taken directly 

from GPU hardware performance counters.  Our analyses are reflective of in situ sorting problems: they preclude the driver 

overhead and the overheads of staging data to/from the accelerator, allowing us to directly contrast the individual and 

cumulative performance of the stream kernels involved.  

Figure 8 plots the measured radix sorting rates exhibited by our implementation and the CUDPP primitive.  For NVIDIA 

GT200 and G80 GPUs, we best parameterize our strategy with radix r = 16 digits (d = 4 bits).   We have also overlaid the 

keys-only sorting results presented Chhugani et al. for the Intel Core-2 Q9550 quad-core CPU [21], which we believe to be 

the fastest hand-tuned numerical sorting implementation for multi-core CPUs.  As expected, we observe that the radix sorting 

performances plateau into steady-state as the GPU’s resources become saturated.  In addition to exhibiting 3.6x and 2.8x 

speedups over the CUDPP implementation on the same device, our key-value and key-only implementations provide 

smoother, more consistent performance across the sampled problem sizes. 

Recent publications for this genre of sorting problems have set a precedent of comparing the sorting performances of the 

“best available” many-core GPU and CPU microarchitectures.  At the time, Chhugani et al. championed the performances of 

Intel's fastest consumer-grade Q9550 quad-core processor and cycle-accurate simulations of the 32-core Larrabee platform 

over G80-based NVIDIA GPUs [21].  Shortly afterward, Satish et al. presented GPGPU performance that was superior to the 

Q9550 from the newer NVIDIA GT200 architecture [19].  We extended our comparison to a superset of the devices 

evaluated by these publications.  The saturated sorting rates on these devices for input sequences of 16M+ keys are denoted 

in Figure 9.  We observe speedups over Satish et al. (CUDPP) of 3x+ for the GT200 architectures, and 2x+ for the G80 

architectures.  Using our method, all of the NVIDIA GPUs outperform the Q9550 CPU and, perhaps more strikingly, our 

sorting rates for GT200 GPUs exhibit up to 1.4x speedup over the previously-dominant cycle-accurate results for 32-core 

Larrabee. 

After leveraging the efficiency of kernel-fusion, we can continue to increase the arithmetic intensity of our radix sorting 

strategy by increasing the number of radix digit bits d (and thus decreasing the number of distribution sorting passes).  Figure 

10 shows our average saturated sorting rates for 1 ≤ d ≤ 5.  We observe that throughput improves as d increases for d < 5.  

When d ≥ 5, two issues conspire to impair performance, both related to the exponential growth of radix digits r = 2d that need 

scanning.  The first is that the cumulative computational workload is no longer decreasing with reduced passes.  Because the 

two bottom-level kernels are compute-bound under this load, continuing to increase overall the computational workload will 

only result in progressively larger slowdowns.   The second issue is that increasing local storage requirements (i.e., registers 

and shared memory) prevent SM saturation: the occupancy per GPU core is reduced from 640 to 256 threads. 

 

Device Key-value Rate  Keys-only Rate 
  (10

6
 pairs / sec) (10

6
 keys / sec) 

Name Release 
Date 

CUDPP 
Radix 

SRTS Radix 
(speedup) 

CUDPP 
Radix 

SRTS Radix 
(speedup) 

NVIDIA GTX 285 Q1/2009 134 482 (3.6x) 199 550 (2.8x) 
NVIDIA GTX 280 Q2/2008 117 428 (3.7x) 184 474 (2.6x) 
NVIDIA Tesla C1060 Q2/2008 111 330 (3.0x) 176 471 (2.7x) 
NVIDIA 9800 GTX+ Q3/2008 82 165 (2.0x) 111 226 (2.0x) 
NVIDIA 8800 GT Q4/2007 63 129 (2.1x) 83 171 (2.1x) 
NVIDIA 9800 GT Q3/2008 61 121 (2.0x) 82 165 (2.0x) 
NVIDIA 8800 GTX Q4/2006 57 116 (2.0x) 72 153 (2.1x) 
NVIDIA Quadro  

    FX5600 

Q3/2007 55 110 (2.0x) 66 147 (2.2x) 

          Merge [21] 

Intel Q9550 quad-core Q1/2008 
   

138 
Intel Larrabee 32-core Cancelled 

   
386 

 

Figure 8.  GTX-285 key-value and key-only radix sorting rates 

for the CUDPP and our 4-bit SRTS-based implementations, 
overlaid with Chhugani et al. [21] key-only sorting rates for the 
Intel Core-2 Q9550 quad-core CPU. 

Figure 9.  Saturated sorting rates for input sequences larger 

than 16M elements. 
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Figure 13.  Aggregate GTX-285 

computational overhead (n ≥ 16M 
key-value pairs). 

Figure 14. GTX-285 computational overhead per distribution sort (n ≥ 16M key-

value pairs). 
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Figures 11 and 12 show the computational throughputs and bandwidths realized by our SRTS variants and the CUDPP 

implementation.   The realistic GTX-285 device maximums are δcompute ≈ 354 x109 thread-cycles/second and δmem ≈ 136-149 

x109 bytes/second.  Because their saturating kernels are compute-bound, our 3-bit and 4-bit variants achieve 94+% 

utilizations of the available computational resources.  The 1-bit, 2-bit, and CUDPP implementations have a mixture of 

compute-bound and memory-bound kernels, resulting in lower overall averages for both. The 5-bit variant illustrates the 

effects of under-occupied SM cores: its kernels are compute-bound, yet it only utilizes 68% of the available computational 

throughput. 

Our five SRTS columns in Figure 13 illustrate the “bathtub” curve of computational overhead versus digit size: workload 

decreases with the number of passes over digit-places until the cost of scanning radix digits becomes dominant at d = 5.  This 

overhead is inclusive of the number of thread-cycles consumed by scalar instructions as well as the number of stall cycles 

incurred by the warp-serializations that primarily result from the random exchanges of keys and values in shared memory.  

The 723 thread-cycles executed per input element by our 4-bit implementation may seem substantial, yet efficiency is 2.7x 

that of the CUDPP implementation.   

Figure 14 presents the computational overheads of the individual kernel invocations that comprise a single digit-place 

iteration, i.e., distribution sort.  For d > 2, we observe that the workload deltas between scan kernels double as d is 

incremented, scaling with r as expected and validating our model of instruction overhead from Section 4.2.  Our 1-bit and 2-

bit variants don’t follow this parameterized model: the optimizing compiler produces different code for them because flag 

vector encoding yields only one composite scan. 

   

Figure 10.  Saturated GTX-285 
sorting rates (n ≥ 16M key-value 
pairs). 

Figure 11. Realized GTX-285 
computational throughputs (n ≥ 
16M key-value pairs). 

Figure 12. Realized GTX-285 
memory bandwidths (n ≥ 16M key-
value pairs). 
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The overall memory workloads for these implementations are shown in Figure 15.  We confirm our model from Section 4.1 

that memory overhead monotonically decreases with increasing d.  The memory workload of the CUDPP implementation (4-

bit digits) is 1.6x that of our 4-bit variant.  

Figure 16 illustrates the memory overheads for a single distribution sort, broken down by kernel and type.  Although our 

scatter instructions logically write two 32-bit words per pair (the key and the value), we observe that the hardware issues 

additional write transactions when threads within the same half-warp write keys having different radix digits to different 

memory segments.  On this architecture, these write instructions incur a ~70% I/O overhead that increases in proportion with 

r, the number of digit partitions.  This non-coherence overhead accounts for a 28% increase over our cumulative I/O model; 

the CUDPP implementation experiences a 22% increase over its cumulative I/O model.   

The scatter inefficiencies decrease for less-random key distributions.  With zero effective random bits (uniformly identical 

keys), our 4-bit implementation averages a saturated sorting rate of 550 x106 pairs/second.  These compute-bound kernels do 

not benefit from this lower memory workload: this speedup is instead gained from the elimination of warp-serialization 

hazards that stem from bank conflicts incurred during key exchange.  

The boundary between compute-boundedness and memory-boundedness, or the memory wall, is the ratio between 

computational and memory throughputs.  It is often expressed in terms of the number of cycles that can execute per memory-

reference, but we prefer the inverse: the average number of bytes that can be serviced per cycle.  Figure 17 illustrates the 

corresponding workload ratios for each of the stream kernels relative to the GTX-285 memory wall (δmem/δcompute ≈ 4.5 

bytes/cycle).  We see that for d > 2, our distribution sorting streams do not oscillate between and memory-bound and 

  

Figure 15.  Aggregate GTX-285 
memory overhead (n ≥ 16M key-
value pairs). 

Figure 16. GTX-285 memory overhead per distribution sort (n ≥ 16M key-value 
pairs). 
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Figure 17. Memory-to-compute workload ratios for individual stream 
kernels, with the GTX-285 memory wall as a backdrop. 

Figure 18.  Local workloads (excluding I/O 
instructions) for local bitonic and SRTS 
radix sorting networks.  
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compute-bound kernels.  The CUDPP implementation contains a mixture of memory-bound and extremely compute-bound 

kernels. 

For input sequences smaller than 2,048 keys, it is more efficient to implement the entire set of k/d distribution-sorting passes 

as a local sorting problem, i.e., within a single kernel consisting of a single CTA.  Keys are read and written only once from 

global memory and exchanged k/d times in local shared memory.  Bitonic sorting networks [39] are often used for such local 

sorting problems; Figure 18 compares the computational overhead of our local radix sort versus that of the bitonic sorting 

implementation provided by the NVIDIA CUDA SDK [40].  The efficiency of our radix sort exceeds that of bitonic sort for 

sequences larger than 128 keys, exhibiting a speedup of 2.5x for 512 keys.  (Our 4-bit implementation incurs a constant 

overhead for n smaller than the 256-element local block-exchange size; the bitonic implementation is limited to n ≤ 512, the 

maximum number of threads per CTA.)   

6 Discussion of Related Work and Conclusion 

We have presented efficient radix-sorting strategies for ordering large sequences of fixed-length keys (and values) on 

GPUPU stream processors.  Our empirical results demonstrate multiple factors of speedup over existing GPGPU 

implementations, and we believe our implementations to be the fastest available for any fully-programmable 

microarchitecture.  These results motivate a different breed of parallel primitives for GPGPU stream architectures that can 

better exploit the memory and computational resources while maintaining the flexibility of a reusable component.  Our 

generalized parallel scan stream primitive does this in two ways: (1) with interfaces for producer/consumer operations 

(visiting logic) in order to increase the arithmetic intensity of the memory-bound parallel prefix scan primitive in an 

application-neutral manner; and (2) with interfaces for performing multiple related, concurrent prefix scans (multi-scan) in 

order to increase the arithmetic intensity in an application-specific way by increasing the size of the radix digits.   

Although they can be very efficient, radix sorting methods make certain positional and symbolic assumptions regarding the 

bitwise representations of keys.  A comparison-based sorting method is required for a set of ordering rules in which these 

assumptions do not hold.  A variety of comparison-based, top-down partitioning and bottom-up merging strategies have been 

implemented for the GPGPU, e.g., quicksort [41,15], most-significant-digit radix sort [32], sample-sort [42,43], and merge 

sort [19].  The number of recursive iterations for these methods is logarithmic in the size of the input sequence, typically with 

the first or last 8-10 iterations being replaced by a small local sort within each CTA.   

There are several contributing factors that give radix sorting methods an advantage over their comparison-based counterparts.  

First, comparison-based sorting methods must have work-complexity O(nlog2n) [2], making them less efficient as problem 

size grows.  Second, for problem sizes large enough to saturate the device (e.g., several hundred-thousand or more keys), a 

radix digit size d ≥ 4 will result in fewer digit passes than recursive iterations needed by the comparison-based methods 

performing binary partitioning.  Third, the amount of global intermediate state needed by these methods for a given level in 

the tree of computation is proportional to the width of that level, as opposed to a small constant amount for our radix sort 

strategy.  Finally, parallel radix sorting methods guarantee near-perfect load-balancing amongst GPGPU cores, an issue of 

concern for comparison-based methods involving pivot selection. 

We have also demonstrated a method for encoding multiple binary-valued flag vectors into a single, composite 

representation.  This allows us to execute several compaction tasks in shared memory while only incurring the cost of a 

single parallel scan.  While this technique allows us to increase the number of digit bits d more than we would be able to 

otherwise, it is not a critical ingredient for our speedup.  Without flag vector encoding, our d = 2 bits distribution sort would 

require four local scans, the same computational overhead as our 4-bit distribution sort.  This four-scan distribution sort 

exhibits a sorting rate of 3.9 x109 pairs/second; sixteen passes would result in an overall sorting rate of 241 x106 pairs/second 

(and a speedup of 1.8x over the CUDPP implementation). 

For small sorting problems suitable for a single GPU core, this technique allows our local sorting implementations to be 

several times more efficient than popular bitonic and odd-even sorting networks.  Bitonic networks have proven convenient 
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for mapping onto GPGPU computation [44,15,16,45,46].  Although their O(nlog2
2n) work complexity scales poorly for large 

problems, their simplicity has made them amenable for sorting small, local sequences of keys [19,15].  Our work provides an 

attractive, drop-in replacement for stream applications that currently utilize local bitonic sorting methods. 
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