
UC Berkeley

1

Cloud Computing

and the RAD Lab

David Patterson, UC Berkeley

Reliable Adaptive Distributed Systems Lab

Image: John Curley http://www.flickr.com/photos/jay_que/1834540/

(with lots of help from Armando Fox

and a cast of 1000s)

Outline

• What is Cloud Computing?

• Software as a Service / Cloud Computing

in Education at UC Berkeley

• UC Berkeley RAD Lab Research Program

in Cloud Computing

• Q&A
2

Clod computing

―Cloud computing

is nothing (new)‖

―...we’ve redefined Cloud Computing to

include everything that we already do...

I don’t understand what we would do

differently ... other than change the

wording of some of our ads.‖

Larry Ellison, CEO, Oracle (Wall Street

Journal, Sept. 26, 2008)

4

Above the Clouds:

A Berkeley View of Cloud Computing

abovetheclouds.cs.berkeley.edu

• 2/09 White paper by RAD Lab PI’s and students

– Shorter version: ―A View of Cloud Computing,‖

Communications of the ACM, April 2010

– Clarify terminology around Cloud Computing

– Quantify comparison with conventional computing

– Identify Cloud Computing challenges & opportunities

– 50,000 downloads of paper!

• Why can we offer new perspective?

– Strong engagement with industry

– Using cloud computing in research, teaching since 2008

• Goal: stimulate discussion on what’s really new 5

Utility Computing Arrives

• Amazon Elastic Compute Cloud (EC2)

• ―Compute unit‖ rental: $0.08-0.64/hr.

– 1 CU ≈ 1.0-1.2 GHz 2007 AMD Opteron/Xeon core

• N

• No up-front cost, no contract, no minimum

• Billing rounded to nearest hour; pay-as-you-go

storage also available

• A new paradigm (!) for deploying services?
6

“Instances” Platform Cores Memory Disk

Small - $0.08 / hr 32-bit 1 1.7 GB 160 GB

Large - $0.32 / hr 64-bit 4 7.5 GB 850 GB – 2 spindles

XLarge - $0.64 / hr 64-bit 8 15.0 GB 1690 GB – 3 spindles

6

What is it? What’s new?

• Old idea: Software as a Service (SaaS)

– Basic idea predates MULTICS (timesharing in 1960s)

– Software hosted in the infrastructure vs. installed on local

servers or desktops; dumb (but brawny) terminals

– Recently: ―[HW, Infrastructure, Platform] as a service‖ ??

HaaS, IaaS, PaaS poorly defined, so we avoid

• New: pay-as-you-go utility computing

– Illusion of infinite resources on demand

– Fine-grained billing: release == don’t pay

– Earlier examples: Sun, Intel Computing Services—longer

commitment, more $$$/hour, no storage

– Public (utility) vs. private clouds 7

Why Now (not then)?

• ―The Web Space Race‖: Build-out of extremely

large datacenters (10,000’s of commodity PCs)

– Build-out driven by growth in demand (more users)

=> Infrastructure software: e.g., Google File System

=> Operational expertise: failover, DDoS, firewalls...

– Discovered economy of scale: 5-7x cheaper than

provisioning a medium-sized (100’s machines) facility

• More pervasive broadband Internet

• Commoditization of HW & SW

– Fast Virtualization

– Standardized software stacks
8

9

Datacenter is the new

Server
Utility computing: enabling innovation

in new services without first building
& capitalizing a large company.

The Million Server
Datacenter

• 24000 sq. m housing 400 containers

– Each container contains 2500 servers

– Integrated computing, networking, power,

cooling systems

• 300 MW supplied from two power

substations situated on opposite sides of

the datacenter

• Dual water-based cooling systems

circulate cold water to containers,

eliminating need for air conditioned rooms10

Classifying Clouds

• Instruction Set VM (Amazon EC2)

• Managed runtime VM (Microsoft Azure)

• Framework VM (Google AppEngine)

• Tradeoff: flexibility/portability vs. “built in”

functionality

EC2 Azure AppEngine

Lower-level,

Less managed

Higher-level,

More managed

11

Unused resources

Cloud Economics 101

• Cloud Computing User: Static provisioning

for peak - wasteful, but necessary for SLA

“Statically provisioned”

data center
“Virtual” data center

in the cloud

Demand

Capacity

Time

M
a

c
h

in
e

s

Demand

Capacity

Time

$

12

Unused resources

Risk of Under Utilization

• Underutilization results if ―peak‖ predictions

are too optimistic

Static data center

Demand

Capacity

Time

R
e
s
o

u
rc

e
s

13

Risks of Under Provisioning

Lost revenue

Lost users

R
e
s
o

u
rc

e
s

Demand

Capacity

Time (days)
1 2 3

R
e
s
o

u
rc

e
s

Demand

Capacity

Time (days)
1 2 3

R
e

s
o

u
rc

e
s

Demand

Capacity

Time (days)
1 2 3

14

New Scenarios Enabled by

―Risk Transfer‖ to Cloud
• Not (just) Capital Expense vs. Operation Expense!

• ―Cost associativity‖: 1,000 CPUs for 1 hour same

price as 1 CPUs for 1,000 hours (@$0.08/hour)

– RAD Lab graduate students demonstrate improved

Hadoop (batch job) scheduler—on 1,000 servers

• Major enabler for SaaS startups

– Animoto traffic doubled every 12 hours for 3 days when

released as Facebook plug-in

– Scaled from 50 to >3500 servers

– ...then scaled back down

• Gets IT gatekeepers out of the way

– not unlike the PC revolution
15

Hybrid / Surge Computing

• Keep a local ―private cloud‖ running same

protocols as public cloud

• When need more, ―surge‖ onto public

cloud, and scale back when need fulfilled

• Saves capital expenditures by not buying

and deploying power distribution, cooling,

machines that are mostly idle

16

What Scientists Don’t Get

about Cloud Computing

• Economic Analysis: Cost to buy a cluster

assuming run 24x7 for 3 years vs. cost of

same number of hours on Cloud Computing

• Ignores:

– Cost of science grad student as sys. admin.

(mistakes, negative impact on career, …)

– Cost (to campus) of space, power, cooling

– Opportunity cost of waiting when in race to be

first to publish results: 20 local servers for a

year vs. 1000 cloud servers for a week
17

Energy & Cloud Computing?

• Cloud Computing saves Energy?

• Don’t buy machines for local use that are

often idle

• Better to ship bits as photons over fiber

vs. ship electrons over transmission lines to

convert via local power supplies to spin

disks and power processors and memories

– Clouds use nearby (hydroelectric) power

– Leverage economies of scale of cooling, power

distribution 18

Energy & Cloud Computing?

• Techniques developed to stop using idle

servers to save money in Cloud Computing

can also be used to save power

– Up to Cloud Computing Provider to decide

what to do with idle resources

• New Requirement: Scale DOWN and up

– Who decides when to scale down in a

datacenter?

– How can Datacenter storage systems improve

energy?
19

Challenges & Opportunities

• ―Top 10‖ Challenges to adoption, growth,

& business/policy models for Cloud

Computing

• Both technical and nontechnical

• Most translate to 1 or more opportunities

• Complete list in paper

• Paper also provides worked examples to

quantify tradeoffs (―Should I move my

service to the cloud?‖)
20

Growth Challenges

Challenge Opportunity

Programming for large

distributed systems

SEJITS – See Armando Fox

talk at 1:30 in Room 1927

Scalable structured

storage

Major research opportunity

Scaling quickly Invent Auto-Scaler that relies

on ML; Snapshots

Performance

unpredictability

Improved VM support, flash

memory, scheduling VMs

Data transfer

bottlenecks

FedEx-ing disks, Data

Backup/Archival
21

Adoption Challenges

Challenge Opportunity

Availability /

business continuity

Multiple providers & Multiple

Data Centers

Data lock-in Standardization

Data Confidentiality and

Auditability

Encryption, VLANs,

Firewalls; Geographical

Data Storage

22

Policy and Business

Challenges

Challenge Opportunity

Reputation Fate Sharing Offer reputation-guarding

services like those for email

Software Licensing Pay-as-you-go licenses;

Bulk licenses

23

Outline

• What is Cloud Computing?

• Software as a Service / Cloud Computing

in Education at UC Berkeley

• UC Berkeley RAD Lab Research Program

in Cloud Computing

• Q&A
24

Software Education in 2010 (or:

the case for teaching SaaS)

• Traditional ―depth first‖ CS curricula vs. Web 2.0 breadth

– Databases, Networks, OS, SW Eng/Languages, Security, ...

– Students want to write Web apps,learn bad practices by osmosis

– Medium of instruction for SW Eng. courses not tracking

languages/tools/techniques actually in use

• New: languages & tools are actually good now

– Ruby, Python, etc. are tasteful and allow reinforcing important

CS concepts (higher-order programming, closures, etc.)

– tools/frameworks enable orders of magnitude higher productivity

than 1 generation ago, including for testing

• Great fit for ugrad education

– Apps can be developed & deployed on semester timescale

– Relatively rapid gratification => projects outlive the course

– Valuable skills: most industry SW moving to SaaS 25

Comparison to other SW

Eng./programming courses
• Open-ended project

– vs. ―fill in blanks‖ programming

• Focus on SaaS

– vs. Android, Java desktop apps, etc.

• Focus on RoR as high-level framework

• Projects expected to work

– vs. working pieces but no artifact

– most projects actually do work, some continue life

outside class

• Focus on how ―big ideas‖ in

languages/programming enable high productivity
26

Web 2.0 SaaS as

Course Driver
• Majority of students: ability to design own app

was key to appeal of the course

– design things they or their peers would use

• High productivity frameworks => projects work

– actual gratification from using CS skills, vs. getting N

complex pieces of Java code to work but not integrate

• Fast-paced semester is good fit for agile

iteration-based design

• Tools used are same as in industry

27

Cloud Computing as a

Supporting Technology
• Elasticity is great for courses!

– Watch a database fall over: ~200 servers needed

– Lab deadlines, final project demos don’t collide

– Donation from AWS; even more cost effective

• VM image simplifies courseware distribution
– Prepare image ahead of time

– Students can be root if need to install weird SW, libs...

• Students get better hardware

– cloud provider updates HW more frequently

– cost associativity

• VM images compatible with Eucalyptus—

enables hybrid cloud computing 28

Moving to cloud computing

What Before After

Compute servers 4 nodes of R cluster EC2

Storage local Thumper S3, EBS

Authentication login per student, MySQL

username/tables per

student, ssh key for SVN

per student

EC2 keypair +

Google account

Database Berkeley ITS shared

MySQL

MySQL on EC2

Version control local SVN repository Google Code SVN

Horizontal scaling ??? EC2 +

haproxy/nginx

Software stack

management

burden Jon Kuroda create AMI

29

SaaS Course

Success Stories

30

Success stories, cont.

• Fall 2009 project: matching undergrads to

research opportunities

• Fall 2009 project: Web 2.0 AJAXy course

scheduler with links to professor reviews

• Spring 2010 projects: apps to stress RAD

Lab infrastructure

– gRADit: vocabulary review as a game

– RADish: comment filtering taken to a whole

new level

31

SaaS Student Feedback

• Comment from alum who took traditional

Software Engineering Course (in Java) :

―SaaS Project would have taken more

than 2x the time in Java‖

• Comment from instructor of traditional

SWE course: ―most projects didn’t really

work at the end‖

• Hard to be as productive at lower level

of abstraction than Ruby on Rails

Moving to cloud computing

What Before After

Compute servers 4 nodes of R cluster EC2

Storage local Thumper S3, EBS

Authentication login per student, MySQL

username/tables per

student, ssh key for SVN

per student

EC2 keypair +

Google account

Database Berkeley ITS shared

MySQL

MySQL on EC2

Version control local SVN repository Google Code SVN

Horizontal scaling No (Can’t afford it) EC2 +

haproxy/nginx

Software stack

management

burden local systems

administrator

create AMI

SaaS Changes Demands on

Instructional Computing?
• Runs on your laptop or

class account

• Good enough for course
project

• Project scrapped when
course ends

• Intra-class teams

• Courseware: tarball or
custom installs

• Code never leaves UCB

• Per-student/per-course
account

• Runs in cloud, remote
management

• Your friends can use it
=> *ilities matter

• Gain customers
=> app outlives course

• Teams cross class &
UCB boundaries

• Courseware: VM image

• Code released open
source, résumé builder

• General, collaboration-
enabling tools & facilities

Summary: Education

• Web 2.0 SaaS is a great motivator for teaching

software skills

– students get to build artifacts they themselves use

– some projects continue after course is over

– opportunity to (re-)introduce ―big ideas‖ in software

development/architecture

• Cloud computing is great fit for CS courses

– elasticity around project deadlines

– easier administration of courseware

– students can take work product with them after course

(e.g. use of Eucalyptus in RAD Lab)

35

Outline

• What is Cloud Computing?

• Software as a Service / Cloud Computing

in Education at UC Berkeley

• UC Berkeley RAD Lab Research Program

in Cloud Computing

• Q&A
36

RAD Lab 5-year Mission

Enable 1 person to develop, deploy, operate
next -generation Internet application

• Key enabling technology: Statistical machine learning
– debugging, power management, performance prediction, ...

• Highly interdisciplinary faculty & students
– PI’s: Fox/Katz/Patterson (systems/networks), Jordan (machine

learning), Stoica (networks & P2P), Joseph (systems/security),
Franklin (databases)

– 2 postdocs, ~30 PhD students, ~10 undergrads

37

Machine Learning & Systems

• Recurring theme: cutting-edge Statistical

Machine Learning (SML) works where simpler

methods have failed

• Predict performance of complex software system when

demand is scaled up

• Automatically add/drop servers to fit demand, without

violating Service Level Objective (SLO)

• Distill millions of lines of log messages into an

operator-friendly ―decision tree‖ that pinpoints

―unusual‖ incidents/conditions

38

RAD Lab Prototype:
System Architecture

DriversDriversDrivers

New apps,
equipment,
global policies
(eg SLA)

Offered load,
resource

utilization, etc.

C
h
u
k
w

a
 &

 X
T

ra
c
e
 (m

o
n
ito

rin
g
)

Training data

Ruby on
Rails environment

VM monitor

local OS functions

Chukwa trace coll.

web svc
APIs

Web 2.0 apps

local OS functions

Chukwa trace coll.

SCADS

Director

performance &
cost

models

Log
Mining

A
u
to

m
a
ti
c

W
o
rk

lo
a
d

E
v
a
lu

a
ti
o
n
 (

A
W

E
)

39

Console logs are not

operator friendly

40

Console Logs Operators

• Problem – Don’t know what to look for!
• Console logs are intended for a single developer

• Assumption: log writer == log reader

• Today many developers => massive textual logs

grep

Perl scripts

search

• Our goal - Discover the most interesting log

messages without any prior input

Console logs are hard for

machines too

41

• Problem

• Highly unstructured, looks like free text

• Not able to capture detailed program state with texts

• Hard for operators to understand detection results

• Our contribution

• A general framework for processing console logs

• Efficient parsing and features

• 24M lines of log to 1 page picture of anamolies

Machine

Learning

Machine

Learning
VisualizationParsing Feature

Creation

Automatic Management

of a Datacenter

• As datacenters grow, need to automatically

manage the applications and resources

– examples:

• deploy applications

• change configuration, add/remove virtual machines

• recover from failures

• Director:

– mechanism for executing datacenter actions

• Advisors:

– intelligence behind datacenter management
42

Director Framework

Advisor
Advisor

Advisor

Datacenter(s)

VM VM VM VM

Director

Drivers config

monitoring

data

Advisor

performance

model

workload

model

43

Director Framework

• Director

– issues low-level/physical actions to the

DC/VMs

• request a VM, start/stop a service

– manage configuration of the datacenter

• list of applications, VMs, …

• Advisors

– update performance, utilization metrics

– use workload, performance models

– issue logical actions to the Director

• start an app, add 2 app servers
44

What About Storage?

• Easy to imagine how to scale up and scale

down computation

• Database don’t scale down, usually run

into limits when scaling up

• What would it mean to have datacenter

storage that could scale up and down as

well so as to save money for storage in

idle times?

45

SCADS: Scalable, Consistency-

Adjustable Data Storage

• Goal: Provide web application developers with

scale independence as site grows

– No changes to application

– Cost / User doesn’t increase as users increase

– Latency / Request doesn’t increase as users

• Key Innovations

– Performance safe query language (PIQL)

– Declarative performance/consistency tradeoffs

– Automatic scale up and down using machine learning

(Director/Advisor)

46

Conclusion

• Cloud Computing will transform IT industry

– Pay-as-you-go utility computing leveraging economies

of scale of Cloud provider

– Anyone can create/scale next eBay, Twitter…

• Transform academic research, education too

• Cloud Computing offers $ for systems to scale

down as well as up: save energy too

• RAD Lab addressing New Cloud Computing

challenges: SEJITS, Director to manage

datacenter using SML, Scalable DC Store

47

Backup Slides

48

UCB SaaS Courses

Lower

div.

Upper

div.

Grad.

Understand Web 2.0 app structure ✔

Understand high-level abstraction toolkits

like RoR

✔ ✔

How high-level abstractions implemented
✔ ✔

Scaling/operational challenges of SaaS ✔ ✔

Develop & deploy SaaS app
✔ ✔

Implement new abstractions, languages, or

analysis techniques for SaaS

✔

2020 IT Carbon Footprint

50

820m tons CO2

360m tons CO2

260m tons CO2

2007 Worldwide IT

carbon footprint:

2% = 830 m tons CO2

Comparable to the

global aviation

industry

Expected to grow

to 4% by 2020

