
Designing and Deploying
Internet-Scale Services

James Hamilton

2008.12.02

Architect, Data Center Futures

e: JamesRH@microsoft.com

w: research.microsoft.com/~jamesrh

w: perspectives.mvdirona.com

Å15 years in database engine development
ïLead architect on IBM DB2
ïArchitect on SQL Server

Å Led variety of core engine teams including SQL client, SQL compiler,
optimizer, XML, full text search, execution engine, protocols, etc.

ÅLed the Exchange Hosted Services Team
ïEmail anti-spam, anti-virus, and archiving for 2.2m seats

with $27m revenue
ï~700 servers in 10 data centers world-wide

ÅArchitect on Windows Live Platform Services
ÅCurrently Data Center Futures Architect
ÅAutomation & redundancy is only way to:
ïReduce costs
ï Improve rate of innovation
ïReduce operational failures and downtime

Background & Biases

212/2/2008 http://perspectives.mvdirona.com

Agenda
ÅMotivation & Overview

ÅRecovery-Oriented Computing

ÅOverall Application Design

ÅOperational Issues

ÅSummary

312/2/2008

Contributors: Search, Mail, Exchange Hosted Services, Live Collaboration Server, Contacts & Storage,
Spaces, Xbox Live, Rackable Systems, Messenger, WinLiveOperations, & MS.com Ops

http://perspectives.mvdirona.com

ÅSystem-to-admin ratio indicator of admin costs
ïTracking total ops costs often gamed
ÅOutsourcing halves ops costs without addressing real issues

ïInefficient properties: <10:1

ïEnterprise: 150:1

ïBest services: over 2,000:1

Å80% of ops issues from design and development
ïPoorly written applications are difficult to automate

ÅFocus on reducing ops costs during design &
development

Motivation

12/2/2008 4http://perspectives.mvdirona.com

What Does Operations do?

12/2/2008 5

Å 51% is deployment & incident management (known resolution)

Å Teams: Messenger, Contacts and Storage & business unit IT services

Architectural
Engineering Total

8%

Deployment
Management

Total
31%

Incident
Management

Total
20%

Problem
Engineering Total

10%

Overhead Total
11%

Requests Total
6%

Software
Development

Total
7%

Site Management
Total
7%

Source: Deepak Patil, Global
Foundation Services (8/14/2006)

http://perspectives.mvdirona.com

ROC Design Pattern

ÅRecover-oriented computing (ROC)
ïAssume software & hardware will fail frequently & unpredictably

ÅHeavily instrument applications to detect failures

App
Bohr Bug Bohr bug: Repeatable functional

software issue (functional bugs);
should be rare in production
Heisenbug:Software issue that only
occurs in unusual cross-request
timing issues or the pattern of long
sequences of independent
operations; some found only in
production

Urgent
Alert

Heisenbug

Reboot
Failure

Restart

Re-image
Failure

Replace
Failure

Machine out of rotation and power down

Set LCD/LED to "needs service"

12/2/2008 6http://perspectives.mvdirona.com

ÅDevelopment and testing with full service

ïSingle-box deployment

ïQuick service health check

ÅPod or cluster independence

ïZero trust of underlying components

ÅImplement & test ops tools and utilities

ÅSimplicity throughout

ÅPartition & version everything

Overall Application Design

12/2/2008 7http://perspectives.mvdirona.com

Design for Auto-Mgmt & Provisioning

ÅNever rely on local, non-replicated persistent state

ÅSupport for geo-distribution

ÅAuto-provisioning & auto-installation mandatory
ïExplicitly install everything & then verify

ïManage "service role" rather than servers

ÅMulti-system failures are common
ïLimit automation range of action

ÅForce fail all services and components regularly
ïDon't worry about clean shutdown
ÅOften won't get it & need this path tested

12/2/2008 8http://perspectives.mvdirona.com

ÅShip frequently:
ïSmall releases ship more smoothly
ïIncreases pace of innovation
ïLong stabilization periods not required in services

ÅUse production data to find problems (traffic capture)
ïMeasurable release criteria
ïRelease criteria includes quality and throughput data

ÅTrack all recovered errors to protect against automation-
supported service entropy

ÅTest all error paths in integration & in production
ÅTest in production via incremental deployment & roll-back
ïNever deploy without tested roll-back
ïContinue testing after release

Release Cycle & Testing

912/2/2008 http://perspectives.mvdirona.com

Å Incrementally release with schema changes?
ïOld code must run against new schema, or
ïTwo-phase process (avoid if possible)
ÅUpdate code to support both, commit changes, and then upgrade schema

Å Incrementally release with user experience (UX) changes?
ïSeparate UX from infrastructure
ïEnsure old UX works with new infrastructure
ïDeploy infrastructure incrementally
ïOn success, bring a small beta population onto new UX
ïOn continued success, announce new UX and set a date to

roll out
ÅClient-side code?
ïEnsure old & new clients both run with new infrastructure

Design for Incremental Release

12/2/2008 10http://perspectives.mvdirona.com

ÅNo amount of "head room" is sufficient

ïEven at 25-50% H/W utilization, spikes will exceed 100%

ÅPrevent overload through admission control

ÅGraceful degradation prior to admission control

ïFind less resource-intensive modes to provide (possibly)
degraded services

ÅRelated concept: Metered rate-of-service admission

ïService login typically more expensive than steady state

ïAllow a single or small number of users in when restarting
a service after failure

Graceful Degradation & Admission Control

12/2/2008 11http://perspectives.mvdirona.com

ÅProduce perf data, health data & throughput data

ÅAll config changes need to be tracked via audit log

ÅAlerting goals:
ïNo customer events without an alert (detect problems)

ï!ƭŜǊǘ ǘƻ ŜǾŜƴǘ Ǌŀǘƛƻ ƴŜŀǊƛƴƎ м όŘƻƴΩǘ ŦŀƭǎŜ ŀƭŀǊƳύ

Å!ƭŜǊǘƛƴƎ ƛǎ ŀƴ ŀǊǘ Χ ƴŜŜŘ ǘƻ ǘǳƴŜ ŀƭŜǊǘƛƴƎ ŦǊŜǉǳŜƴǘƭȅ
ï/ŀƴΩǘ ŜƳōŜŘ ƛƴ ŎƻŘŜ όǘƻƻ ƘŀǊŘ ǘƻ ŎƘŀƴƎŜύ

ïCode produces events, events tracked centrally, alerts produced via
queries over event DB

ÅTesting in production requires very reliable monitoring
ïCombination of detection & capability to roll back allows nimbleness

ÅTracked events for all interesting issues
ïLatencies are toughest issues to detect

Auditing, Monitoring & Alerting

12/2/2008 12http://perspectives.mvdirona.com

Å Expect latency & failures in dependent services

ïRun on cached data or offer degraded services

ïTest failure & latency frequently in production

Å 5ƻƴΩǘ ŘŜǇŜƴŘ ǳǇƻƴ ŦŜŀǘǳǊŜǎ ƴƻǘ ȅŜǘ ǎƘƛǇǇŜŘ

ï It takes time to work out reliability & scaling issues

Å Select dependent components & services thoughtfully

ïOn-server components need consistent quality goals

ï5ŜǇŜƴŘŜƴǘ ǎŜǊǾƛŎŜǎ ǎƘƻǳƭŘ ōŜ ƭŀǊƎŜ ƎǊŀƴǳƭŜ όάǿƻǊǘƘέ ǎƘŀǊƛƴƎύ

Å Isolate services & decouple components

ïContain faults within services

ïAssume different upgrade rates

ïRather than auth on each connect, use session key and refresh every N
hours (avoids login storms)

Dependency Management

1312/2/2008 http://perspectives.mvdirona.com

Å Systems fail & you will experience latency

Å Communicate through multiple channels

ï Opt-in RSS, web, IM, email, etc.

ï If app has client, report details through
client

Å Set ETA expectations & inform

Customer & Press Communications Plan

12/2/2008 14

Å Some events will bring press attention

Å There is a natural tendency to hide systems issues

Å Prepare for serious scenarios in advance

Å Data loss, data corruption, security breach, privacy violation

Å Prepare communications skeleton plan in advance

Å Who gets called, communicates with the press, & how data is gathered

Å Silence typically interpreted as hiding something or lack of control

http://perspectives.mvdirona.com

ÅReduced operations costs & improved reliability
through automation
ÅFull automation dependent upon partitioning &

redundancy
ÅEach human administrative interaction is an

opportunity for error
ÅDesign for failure in all components & test

frequently
ÅRollback & deep monitoring allows safe

production testing

Summary

12/2/2008 15http://perspectives.mvdirona.com

ÅDesigning & Deploying Internet-Scale Services paper:
ï http://research.microsoft.com/~JamesRH/TalksAndPapers/JamesRH_Lisa.pdf

ÅAutopilot: Automatic Data Center Operation
ï http://research.microsoft.com/users/misard/papers/osr2007.pdf

ÅRecovery-Oriented Computing
ï http://roc.cs.berkeley.edu/
ï http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
ï http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-

BDC0809EC588EEDF

Å These slides:
ï Will be posted to http://research.microsoft.com/~jamesrh later in the week

ÅEmail:
ï JamesRH@microsoft.com

ÅExternal Blog:
ï http://perspectives.mvdirona.com

More Information

12/2/2008 16http://perspectives.mvdirona.com

http://research.microsoft.com/~JamesRH/TalksAndPapers/JamesRH_Lisa.pdf
http://research.microsoft.com/users/misard/papers/osr2007.pdf
http://roc.cs.berkeley.edu/
http://www.cs.berkeley.edu/~pattrsn/talks/HPCAkeynote.ppt
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://www.sciam.com/article.cfm?articleID=000DAA41-3B4E-1EB7-BDC0809EC588EEDF
http://research.microsoft.com/~jamesrh
http://perspectives.mvdirona.com/

