Internet-Scale Service

Infrastructure Efficiency

International Symposium on System Architecture

James Hamilton, 2009/6/23 VP & Distinguished Engineer, Amazon Web Services e: James@amazon.com w: mvdirona.com/jrh/work b: perspectives.mvdirona.com

Agenda

- High Scale Services
 - Infrastructure cost breakdown
 - Where does the power go?
- Power Distribution Efficiency
- Mechanical System Efficiency
- Server & Applications Efficiency
 - Hot I/O workloads & NAND flash
 - Resource consumption shaping
 - Work done per joule & per dollar

Background & Biases

- 15 years in database engine development
 - Lead architect on IBM DB2
 - Architect on SQL Server
- Past 5 years in services
 - Led Exchange Hosted Services Team
 - Architect on the Windows Live Platform
 - Architect on Amazon Web Services
- Talk does not necessarily represent positions of current or past employers

Services Different from Enterprises

• Enterprise Approach:

- Largest cost is people -- scales roughly with servers (~100:1 common)
- Enterprise interests center around consolidation & utilization
 - Consolidate workload onto fewer, larger systems
 - Large SANs for storage & large routers for networking

• Internet-Scale Services Approach:

- Largest costs is server & storage H/W
 - Typically followed by cooling, power distribution, power
 - Networking varies from very low to dominant depending upon service
 - People costs under 10% & often under 5% (>1000+:1 server:admin)
- Services interests center around work-done-per-\$ (or joule)

• Observations:

- People costs shift from top to nearly irrelevant.
- Expect high-scale service techniques to spread to enterprise
- Focus instead on work done/\$ & work done/joule

Power & Related Costs Dominate

• Assumptions:

- Facility: ~\$200M for 15MW facility (15-year amort.)
- Servers: ~\$2k/each, roughly 50,000 (3-year amort.)
- Average server power draw at 30% utilization: 80%
- Commercial Power: ~\$0.07/kWhr

3yr server & 15 yr infrastructure amortization

Observations:

- \$2.3M/month from charges functionally related to power
- Power related costs trending flat or up while server costs trending down

Details at: <u>http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx</u>

PUE & DCiE

- Measure of data center infrastructure efficiency
- Power Usage Effectiveness
 - PUE = (Total Facility Power)/(IT Equipment Power)
- Data Center Infrastructure Efficiency
 - DCiE = (IT Equipment Power)/(Total Facility Power) * 100%
- Help evangelize tPUE (power to server components)
 - <u>http://perspectives.mvdirona.com/2009/06/15/PUEAndTotalPowerUsageEfficiencyTPUE.aspx</u>

http://www.thegreengrid.org/en/Global/Content/white-papers/The-Green-Grid-Data-Center-Power-Efficiency-Metrics-PUE-and-DCiE

Where Does the Power Go?

- Assuming a pretty good data center with PUE ~1.7
 - Each watt to server loses ~0.7W to power distribution losses & cooling
 - IT load (servers): 1/1.7=> 59%
- Power losses are easier to track than cooling:
 - Power transmission & switching losses: 8%
 - Detailed power distribution losses on next slide
 - Cooling losses remainder:100-(59+8) => 33%
- Observations:
 - Server efficiency & utilization improvements highly leveraged
 - Cooling costs unreasonably high

Agenda

- High Scale Services
 - Infrastructure cost breakdown
 - Where does the power go?
- Power Distribution Efficiency
- Mechanical System Efficiency
- Server & Applications Efficiency
 - Hot I/O workloads & NAND flash
 - Resource consumption shaping
 - Work done per joule & per dollar

Power Distribution

http://perspectives.mvdirona.com

Power Distribution Efficiency Summary

- Two additional conversions in server:
 - 1. Power Supply: often <80% at typical load
 - 2. On board step-down (VRM/VRD): <80% common
 - ~95% efficient both available & affordable
- Rules to minimize power distribution losses:
 - 1. Oversell power (more theoretic load that power)
 - 2. Avoid conversions (fewer transformer steps & efficient UPS)
 - 3. Increase efficiency of conversions
 - 4. High voltage as close to load as possible
 - 5. Size VRMs & VRDs to load & use efficient parts
 - 6. DC distribution potentially a small win (regulatory issues)

Agenda

- High Scale Services
 - Infrastructure cost breakdown
 - Where does the power go?
- Power Distribution Efficiency
- Mechanical System Efficiency
- Server & Applications Efficiency
 - Hot I/O workloads & NAND flash
 - Resource consumption shaping
 - Work done per joule & per dollar

Conventional Mechanical Design

ASHRAE 2008 Recommended

ASHRAE Allowable

Dell PowerEdge 2950 Warranty

NEBS (Telco) & Rackable Systems

2009/6/23

http://perspectives.mvdirona.com

Air Cooling

- Allowable component temperatures higher than hottest place on earth
 - Al Aziziyah, Libya: 136F/58C (1922)
- It's only a mechanical engineering problem Memory: 3W 20W Temp Spec: 85C-105C
 - More air & better mechanical designs
 - Tradeoff: power to move air vs cooling savings & semi-conductor leakage current
 - Partial recirculation when external air too cold
- Currently available equipment:
 - 40C: Rackable CloudRack C2
 - 35C: Dell Servers

I/O: 5W - 25W Temp Spec: 50C-60C

Processors/Chipset: 40W - 200W Temp Spec: 60C-70C

Rackable CloudRack C2 Temp Spec: 40C

Thanks for data & discussions: Ty Schmitt, Dell Principle Thermal/Mechanical Arch. & Giovanni Coglitore, Rackable Systems CTO

2009/6/23

http://perspectives.mvdirona.com

Hard Drives: 7W- 25W Temp Spec: 50C-60C

Air-Side Economization & Evaporative Cooling

- Avoid direct expansion cooling entirely
- Ingredients for success:
 - Higher data center temperatures
 - Air side economization
 - Direct evaporative cooling
- Particulate concerns:
 - Usage of outside air during wildfires or datacenter generator operation
 - Solution: filtration & filter admin or heat wheel & related techniques
- Others: higher fan power consumption, more leakage current, higher failure rate

Mechanical Efficiency Summary

- Mechanical System Optimizations:
 - 1. Tight airflow control, short paths & large impellers
 - 2. Raise data center temperatures
 - 3. Cooling towers rather than A/C
 - 4. Air side economization & evaporative cooling
 - outside air rather than A/C & towers

20

20

Agenda

- High Scale Services
 - Infrastructure cost breakdown
 - Where does the power go?
- Power Distribution Efficiency
- Mechanical System Efficiency
- Server & Applications Efficiency
 - Hot I/O workloads & NAND flash
 - Resource consumption shaping
 - Work done per joule & per dollar

Disk Random BW vs Sequential BW

- Disk sequential BW lagging DRAM and CPU
- Disk random access BW growth ~10% of sequential
- Conclusion: Storage Chasm widening requiring larger memories & more disks

Memory to Disk Chasm

- Disk I/O rates grow slowly while CPU data consumption grows near Moore pace
 - Random read 1TB disk: 15 to 150 days*
- Sequentialize workloads
 - Essentially the storage version of cache conscious algorithms
 - e.g. map/reduce
 - Disks arrays can produce acceptable aggregate sequential bandwidth
- Redundant data: materialized views & indexes
 - Asynchronous maintenance
 - Delta or stacked indexes (from IR world)
- Distributed memory cache (remote memory "closer" than disk)
- I/O Cooling: Blend hot & cold data (using HDD)
- I/O concentration: partition hot & cold (SSD & HDD mix)

* Tape is Dead, Disk is Tape, Flash is Disk, Ram Locality is King (Jim Gray)

Case Study: TPC-C with SSD

Slot	Controller	Disks		Capacity		Usage	
0	Dell PERC5i	8x73GB,15K,SAS	RAID10	Disk 6	15GB	OS	10/2 & LOG
				279.99GB	260GB	Logs	
3	Dell PERC6/E	15x36GB,15K,SAS	RAID0	Disk 2 488.92GB		DB data	
		15x36GB,15K,SAS	RAID0	Disk 3 488	3.92GB	DB data]
4	Dell PERC6/E	15x36GB,15K,SAS	RAID0	Disk 4 488	3.92GB	DB data	Data
		15x36GB,15K,SAS	RAID0	Disk 5 488	3.92GB	DB data	
6	Dell PERC6/E	15x73GB,15K,SAS	RAID0	Disk 0 101	6.23GB	DB data]
		15x73GB,15K,SAS	RAID0	Disk 1 101	6.23GB	DB data]

- 98 HDD total
 - 90 data disks (primarily random access)
 - 8 log & O/S disks (primarily sequential access)
- Compute HDD/SSD cross-over using fictitious SSD
 - 128GB SSD @ 7k IOPS
- 90 HDD to store 2,464GB (short stroked)
 - 106GB static & 2,357GB dynamic (60 day rule)
 - 90 disk HDD budget: \$26,910 (disks \$299 each)
 - Requires 20 SSDs to support @ up to \$1,346 each
- Static content only (drop 60 day rule)
 - Conservatively estimate 45k IOPS
 - Used 90 short stroked disks at 500 IOPS each
 - Requires 7 SSDs at up to \$3,844 (easy)
 - Very hot I/O workloads a win on SSD

http://www.tpc.org/results/FDR/TPCC/Dell_2900_061608_fdr.pdf

Summary

- CPU optimizations are always welcome but the biggest design & optimization problems today are at the datacenter level
- In work at all levels, focus on:
 - Work done per dollar
 - Work done per joule
- Single dimensional performance measurements are not interesting at scale unless balanced against cost

More Information

- This Slide Deck:
 - I will post these slides to <u>http://mvdirona.com/jrh/work</u> later this week
- Power and Total Power Usage Effectiveness (tPUE)
 - http://perspectives.mvdirona.com/2009/06/15/PUEAndTotalPowerUsageEfficiencyTPUE.aspx
- Berkeley Above the Clouds
 - <u>http://perspectives.mvdirona.com/2009/02/13/BerkeleyAboveTheClouds.aspx</u>
- Degraded Operations Mode
 - <u>http://perspectives.mvdirona.com/2008/08/31/DegradedOperationsMode.aspx</u>
- Cost of Power
 - <u>http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx</u>
 - <u>http://perspectives.mvdirona.com/2008/12/06/AnnualFullyBurdenedCostOfPower.aspx</u>
- Power Optimization:
 - <u>http://labs.google.com/papers/power_provisioning.pdf</u>
- Cooperative, Expendable, Microslice Servers
 - <u>http://perspectives.mvdirona.com/2009/01/15/TheCaseForLowCostLowPowerServers.aspx</u>
- Power Proportionality
 - <u>http://www.barroso.org/publications/ieee_computer07.pdf</u>
- Resource Consumption Shaping:
 - <u>http://perspectives.mvdirona.com/2008/12/17/ResourceConsumptionShaping.aspx</u>
- Email
 - <u>James@amazon.com</u>

