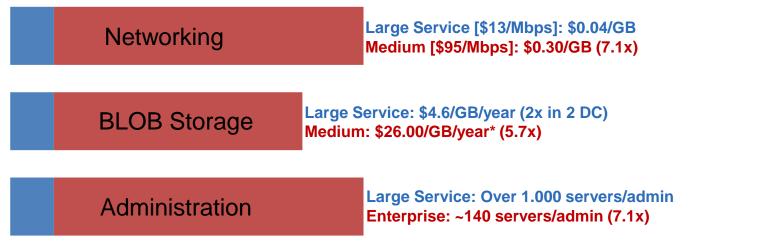
Where Does the Power Go & Vinat to do About it?

James Hamilton Conference on Innovative Data Systems Research 2009/1/7 Amazon Web Services e: James@amazon.com w: mvdirona.com/jrh/work b: perspectives.mvdirona.com


- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations
- Summary

Services Economies of Scale

- Substantial economies of scale possible
- Compare a very large service with a small/mid-sized: (~1000 servers):

2006 Chart data

- High cost of entry
 - Physical plant expensive: 15MW ~\$200M (infrastructure only)
- Summary: significant economies of scale but at high cost of entry
 - Small number of large players likely outcome

Services Different from Enterprises

• Enterprise Approach:

- Largest cost is people -- scales roughly with servers (~100:1 common)
- Enterprise interests center around consolidation & utilization
 - Consolidate workload onto fewer, larger systems
 - Large SANs for storage & large routers for networking

• Internet-Scale Services Approach:

- Largest costs is server & storage H/W
 - Typically followed by cooling, power distribution, power
 - Networking varies from very low to dominant depending upon service
 - People costs under 10% & often under 5% (>1000+:1 server:admin)
- Services interests center around work-done-per-\$ (or joule)

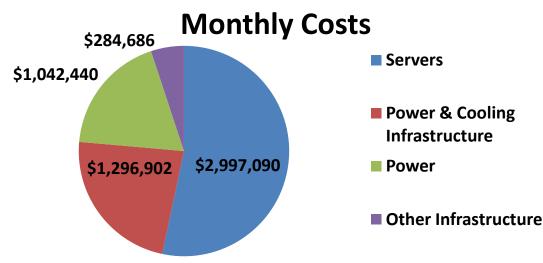
• Observations:

- People costs shift from top to nearly irrelevant.
- Expect high-scale service techniques to spread to enterprise
- Focus instead on work done/\$ & work done/joule

- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations
- Summary

PUE & DCIE

- Measure of data center infrastructure efficiency
- Power Usage Effectiveness
 - PUE = (Total Facility Power)/(IT Equipment Power)
- Data Center Infrastructure Efficiency
 - DCiE = (IT Equipment Power)/(Total Facility Power) * 100%



http://www.thegreengrid.org/gg_content/TGG_Data_Center_Power_Efficiency_Metrics_PUE_and_DCiE.pdf

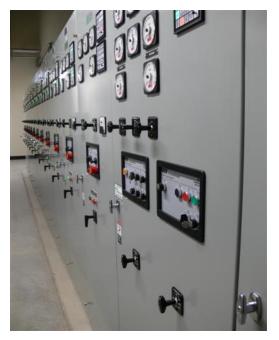
Power & Related Costs Dominate

• Assumptions:

- Facility: ~\$200M for 15MW facility (15-year amort.)
- Servers: ~\$2k/each, roughly 50,000 (3-year amort.)
- Average server power draw at 30% utilization: 80%
- Commercial Power: ~\$0.07/kWhr

3yr server & 15 yr infrastructure amortization

Observations:


- \$2.3M/month from charges functionally related to power
- Power related costs trending flat or up while server costs trending down

Details at: <u>http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx</u>

Fully Burdened Cost of Power

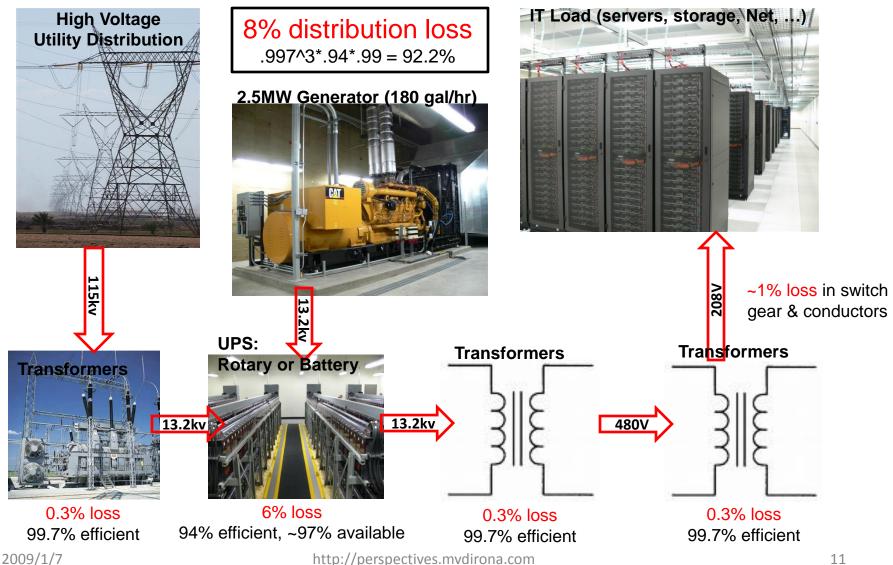
Infrastructure cost/watt:

- 15 year amortization & 5% money cost
- =PMT(5%,15,20000000,0)/(15,000,000) => \$1.28/W/yr
- Cost per watt using \$0.07 Kw*hr:
 - =-0.07*1.7/1000*0.8*24*365=>
 \$0.83/W/yr (@80% power utilization)

- Fully burdened cost of power:
 - \$1.28 + \$0.83 => \$2.11

Where Does the Power Go?

- Assuming a pretty good data center with PUE ~1.7
 - Each watt to server loses ~0.7W to power distribution losses & cooling
- Power losses are easier to track than cooling:
 - Power transmission & switching losses: 8%
 - Detailed power distribution losses on next slide
 - Cooling losses remainder:100-(59+8) => 33%
- Data center power consumption:
 - IT load (servers): 1/1.7=> 59%
 - Distribution Losses: 8%
 - Mechanical load(cooling): 33%


- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations
- Summary

Power Distribution

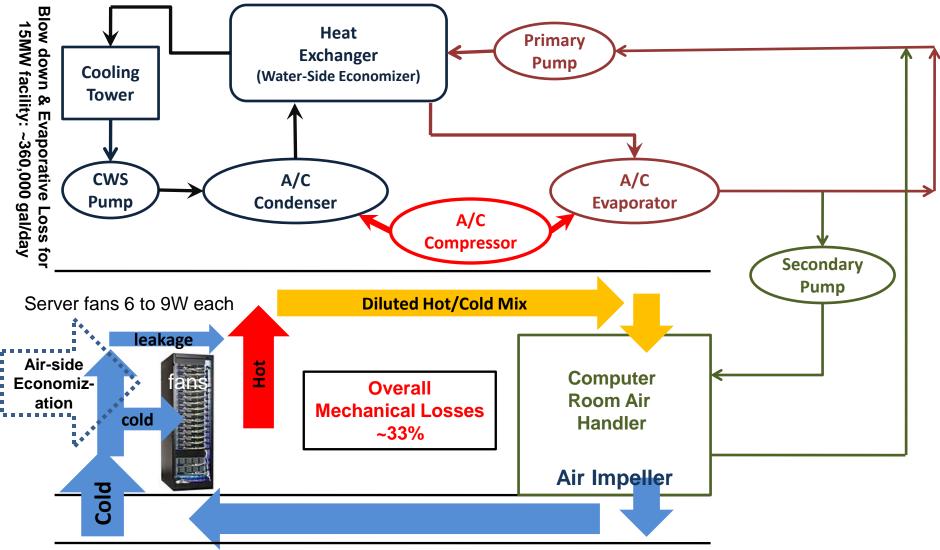
http://perspectives.mvdirona.com

Power Redundancy to Geo-Level

- Over 20% of entire DC costs is in power redundancy
 - Batteries supply over 10 min at some facilities (~2 min sufficient)
 - N+2 generation (2.5MW) at over \$2M each
- Instead use more, smaller, cheaper data centers
- Non-bypass, battery-based UPS in the 94% efficiency range
 - ~900kW wasted in 15MW facility (4,500 200W servers)
 - 97% available (still 450kW loss in 15MW facility)

Power Distribution Optimization

- Two additional conversions in server:
 - Power Supply: often <80% at typical load
 - Voltage Regulation Module: ~80% common
 - ~95% efficient available & affordable
- Rules to minimize power distribution losses:
 - 1. Avoid conversions (Less transformer steps & efficient or no UPS)
 - 2. Increase efficiency of conversions
 - 3. High voltage as close to load as possible
 - 4. Size voltage regulators (VRM/VRDs) to load & use efficient parts
 - 5. DC distribution potentially a small win (regulatory issues
- Two interesting approaches:
 - 480VAC (or higher) to rack & 48VDC (or 12VDC) within
 - 480VAC to PDU and 277VAC to load
 - 1 leg of 480VAC 3-phase distribution

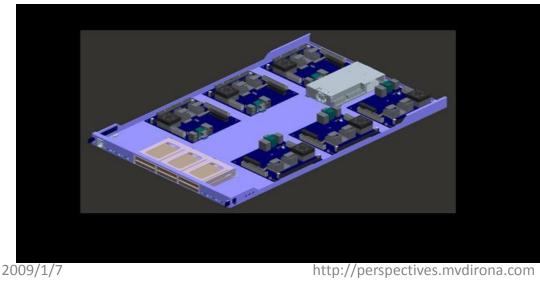

- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations
- Summary

Conventional Mechanical Design

Mechanical Optimization

- Simple rules to minimize cooling costs:
 - 1. Raise data center temperatures
 - 2. Tight control of airflow with short paths
 - 3. Cooling towers rather than A/C
 - 4. Air side economization (open the window)
 - 5. Low-grade, waste heat energy reclamation
- Best current designs still use air but bring water near servers
 - Lower heat densities could be 100% air cooled
- Common mechanical designs: 33% lost in cooling
- PUE under 1.0 within reach with some innovation
 - Waste heat reclamation in excess of power distribution & cooling overhead (~30% effective reclamation sufficient for <1.0 operation)

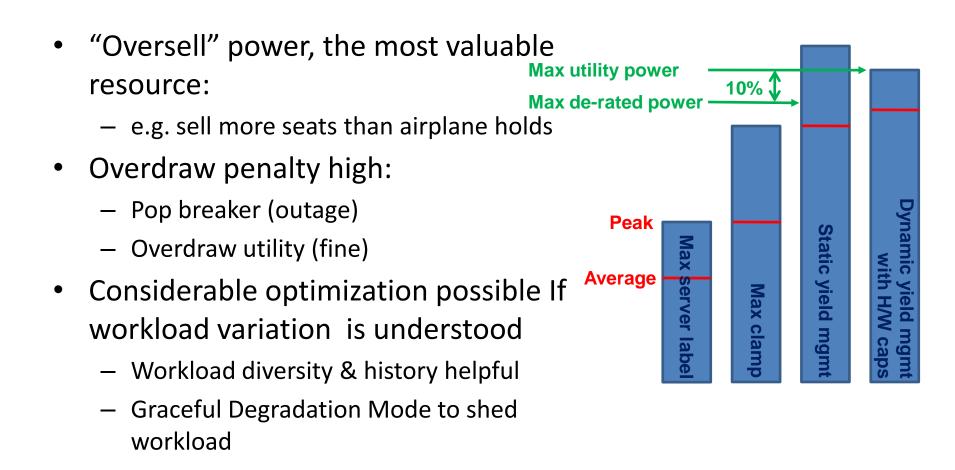
- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations
- Summary



CEMS Speeds & Feeds

- CEMS: Cooperative Expendable Micro-Slice Servers
 - Correct system balance problem with less-capable CPU
 - Too many cores, running too fast, for memory, bus, disk, ...
- Joint project with Rackable Systems (<u>http://www.rackable.com/</u>)

		CEMS V3	CEMS V2	CEMS V1
	System-X	(Athlon 4850e)	Athlon 3400e)	(Athlon 2000+)
CPU load%	56%	57%	57%	61%
RPS	95.9	75.3	54.3	17.0
Price	\$2,371	\$500	\$685	\$500
Power	295	60	39	33
RPS/Price	0.04	0.15	0.08	0.03
RPS/Joule	0.33	1.25	1.39	0.52
RPS/Rack	1918.4	18062.4	13024.8	4080.0


•CEMS V2 Comparison:

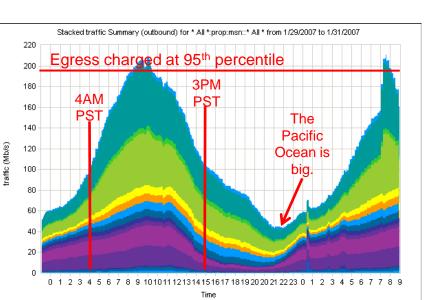
Work Done/\$: +375%
Work Done/Joule +379%
Work Done/Rack: +942%

Update: New H/W SKU likely will improve numbers by factor of 2. CEMS still a win.

18

Power Yield Management

Power Provisioning in a Warehouse-Sized Computer, Xiabo Fan, Wolf Weber, Luize Borroso


Critical Load Optimization

- Power proportionality is great but full load or shut off is even better
 - Idle server consumes ~60% power of full load
 - Industry secret: "great" data center utilization around ~30%
 - All solutions require changing where a workload is executed
- What limits dynamic workload migration?
 - Networking constraints: VIPs can't span L2 nets, ACLs static, manual config, etc.
 - Data Locality: Hard to efficiently move several TB
 - Workload management: Scheduling work over available resources
- Critical load optimizations, in order:
 - Use the servers: any workload with marginal value over power
 - Shut them off if you can't use them
 - Those servers on should be fully loaded but not all resources fully consumed so use power management (e.g. dynamic voltage & frequency scaling)
- Efficient S/W algorithms as important as H/W

Resource Consumption Shaping

- Essentially yield mgmt applied to full DC
- Network charged at 95th percentile:
 - Push peaks to troughs
 - Fill troughs for "free"
 - e.g. Amazon S3 replication
 - Dynamic resource allocation
 - Virtual machine helpful but not needed
 - Charged for symmetrically so ingress effectively free
- Power also charged at 95th percentile
 - Server idle to full-load range: ~65% (e.g. 158W to 230W)
 - S3 (suspend) or S5 (off) when server not needed
- Disks come with both IOPS capability & capacity
 - Mix hot & cold data to "soak up" both
- Encourage priority (urgency) differentiation in charge-back model

David Treadwell & James Hamilton / Treadwell Graph

- Services Inevitable
- Where does the power go?
 - Power distribution systems & optimizations
 - Mechanical systems & optimizations
 - Cooperative, Expendable, Micro-Slice
 Servers
 - Critical Load Optimizations

• Summary

Summary

- Current "good" data centers have considerable room for improvement
- Where do the power go?
 - 58% Servers and other IT equipment
 - 33% mechanical systems
 - 8% power distribution
- Lowest hanging fruit in servers & mechanical systems
- Server system optimizations
 - Utilization levels and general scheduling optimizations
 - Servers optimized for work done per joule & watt rather than raw performance
- CEMS takes only a small step forward but achieves better than 3x improvement in work done/\$ and work done/joule

More Information

• This Slide Deck:

– I will post these slides to <u>http://perspectives.mvdirona.com</u> later this week

• Designing & Deploying Internet-Scale Services

<u>http://mvdirona.com/jrh/talksAndPapers/JamesRH_Lisa.pdf</u>

Architecture for Modular Data Centers

• <u>http://mvdirona.com/jrh/talksAndPapers/JamesRH_CIDR.doc</u>

• Increasing DC Efficiency by 4x

- <u>http://mvdirona.com/jrh/talksAndPapers/JamesRH_PowerSavings20080604.ppt</u>
- Perspectives Blog
 - <u>http://perspectives.mvdirona.com</u>
- Email
 - James@amazon.com