

Internet Scale Infrastructure Innovation **Open Compute Summit 2011**

James Hamilton

VP & Distinguished Engineer, Amazon Web Services email: James@amazon.com web: mvdirona.com/jrh/work blog: perspectives.mvdirona.com

Agenda

- Quickening Pace Infrastructure Innovation
 - Influence of Cloud computing
- Power Distribution
- Cooling & Shell Designs

Talk does not necessarily represent positions of current or past employers

Quickening Pace of Innovation

- Datacenter pace of innovation increasing
 - More innovation in last 5 years than previous 15
 - Driven by cloud service providers and very highscale internet applications like search
 - Cost of infrastructure dominates service cost
 - Not just a cost center
- High focus on infrastructure innovation
 - Driving down cost
 - Increasing aggregate reliability
 - Reducing resource consumption footprint

Perspective on Scaling

Each day Amazon Web Services adds enough capacity to support all of Amazon.com's global infrastructure through the company's first 5 years, when it was a \$2.76B enterprise 2011/10/

Where Does the Money Go?

•Assumptions:

- Facility: ~\$88M for 8MW critical power
- Servers: 46,000 @ \$1.45k each
- Commercial Power: ~\$0.07/kWhr
- Power Usage Effectiveness: 1.45

Observations:

31% costs functionally related to power (trending up while server costs down)
Networking high at 8% of overall costs & 19% of total server cost (many pay more)

From: http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx

Power Distribution ~11% lost in distribution - .997*.94*.98*.98*.99 = 89%

Power Distribution Efficiency Summary

2 more power conversions at servers
 5.Power Supply: often under 80% at typical load
 6.On board voltage regulators (VRMs or VRDs)

- Rules to minimize power distribution losses:
 - Oversell power (more load than provisioned power)
 - Avoid conversions (fewer & better)
 - Increase efficiency of conversions
 - High voltage as close to load as possible
 - Size voltage regulators to load & use efficient parts
 - High voltage direct current a small potential gain

Mechanical Systems

Wednesday, October 26, 2011

Hot Aisle Containment

Facebook Open Compute

WriteLine

Intel

Intel

ASHRAE Recommendations

Wednesday, October 26, 2011

Most Datacenters Still Run Cold

Avoiding Air Conditioning

- Component temps specs higher than historically hottest place on earth
 - Al Aziziyah, Libya: 136F/58C (1922)
- Just a mechanical engineering problem
 - More air or better mechanical designs
- Tradeoff: semi-conductor leakage & power to move more air vs cooling savings
- Currently available equipment temp limits:
 - 40C/104F: CloudRack C2 & most net gear
 - 35C/95F: Most of the server industry

I/O: 5W - 25W Temp Spec: 50C-60C

Processors/Chipset: 40W - 200W **Temp Spec: 60C-70C**

Thanks to Ty Schmitt& Giovanni Coglitore

Innovative Shell Designs

- Evaporative cooling only
 - High pressure misting on rightDamp media design below
- Full building ductless cooling

Facebook Prineville above & below

Modular and Pre-fab DC Designs

- Fast & economic deployments
- Sub-1.2 PUE designs
- Air-side economized
 - In some cases no mechanical cooling
- ISO standard shipping containers offered by Dell, HP, SGI, IBM, ...

Amazon Perdix

Questions?

Slides will be posted to:
http://mvdirona.com/jrh/work
Perspectives Blog:
http://perspectives.mvdirona.com/
Email:

James@amazon.com

